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Abstract

A proper vertex coloring of a non oriented graphG is linear if the graph induced by the
vertices of any two color classes is a forest of paths. A graphG is linearly L-list colorable if
for a given list assignmentL = {L(v) : v ∈ V (G)}, there exists a linear coloringc of G such
that c(v) ∈ L(v) for all v ∈ V (G). If G is linearly L-list colorable for any list assignment
with |L(v)| ≥ k for all v ∈ V (G), thenG is said to be linearlyk-choosable. In this paper,
we investigate the linear choosability for some families ofgraphs: graphs with small maximum
degree, with given maximum average degree, outerplanar andplanar graphs. Moreover, we prove
that deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-complete
problem.

1 Introduction

The notion of acyclic colorings was introduced by Grünbaum [8] in 1973 : a vertex coloring is said
to be acyclic if it is proper (no two adjacent vertices have the same color), and if there is no bicolored
cycle (the subgraph induced by the union of any two color classes is a forest).

A coloringc such that for every vertexv ∈ V (G), no color appears more thank − 1 times in the
neighborhood ofv, is called ak-frugal coloring. The notion ofk-frugality was introduced by Hind,
Molloy, and Reed in [9].

Yuster mixed these two notions in [16], while introducing the concept of linear coloring. Alinear
coloringof a non-oriented graph is an acyclic and 3-frugal coloring.It can also be seen as a coloring
such that the subgraph induced by the union of any two color classes is a forest of paths (an acyclic
graph with maximum degree at most two). Thelinear chromatic numberof a graphG, denoted by
Λ(G), is the minimum number of colors in a linear coloring ofG.

Yuster proved in [16] thatΛ(G) = O(∆(G)3/2) in the general case, and he constructed graphs
for whichΛ(G) = Ω(∆(G)3/2).

The concept of choosability was introduced by Vizing [15], Erdös, Rubin, and Taylor [6]. This
generalization of the notion of coloring has been applied tovarious problems, and more particulary to
the field of coloring under constraints (acyclic choosability [3], (a, b)-choosability [13],k-improper
l-choosability [12]). In this paper, we investigate the linear choosability for some families of graphs.

A graphG is linearlyL-colorable if for a given list assignmentL = {L(v) : v ∈ V (G)}, there
exists a linear coloringc of G such thatc(v) ∈ L(v) for each vertexv. Such a coloring is called
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a linear L-coloring of G. If G is linearlyL-colorable for any assignmentL verifying ∀v ∈ V (G),
|L(v)| ≥ k, thenG is said to be linearlyk-choosable. The smallest integerk such that the graphG
is linearlyk-choosable is called thelinear list-chromatic number, denoted byΛl(G).

We begin with some definitions and basic results (Section 2).Section 3 is dedicated to the study
of graphs with small maximum degree : we prove thatΛl(G) ≤ 5 when∆(G) ≤ 3, andΛl(G) ≤ 9
when∆(G) ≤ 4. In Section 4, we use a canonical decomposition to prove thatevery outerplanar
graphG with maximum degree∆ verifiesΛl(G) ≤ ⌈∆/2⌉ + 2. In section 5, we give bounds for
graphs with bounded maximum average degree. In Section 6, weprove that every planar graph of
maximum degree∆ ≥ 12 verifiesΛl(G) ≤ ∆ + 26. Finally, we prove that determining whether a
bipartite subcubic planar graph is linearly 3-colorable isan NP-complete problem (Section 7).

In the following, we recall some definitions and notations. LetG be a simple graph (i.e. without
multiple edges or loops),V (G) its set of vertices andE(G) its set of edges. LetN(v) be the neigh-
borhood of the vertexv ∈ V (G), i.e. the set of the vertices adjacent tov. The degree of a vertex
v is denoted byd(v), and the maximum degree of the graphG is denoted by∆(G). A vertex with
degreed (resp. at mostd, at leastd) is called ad-vertex (resp.≤d−vertex,≥d−vertex). A graph is
saidd-regular if it only containsd-vertices.

A 3-frugal coloring was defined above as a proper coloring of the vertices of a graph, such that
no color appears more than twice in each neigbourhood. In thefollowing, we will also use a slight
abuse of notation, by saying that the 3-frugality of a vertexv is respectedor preserved, when no
color appears more than twice inN(v).

2 First results

A linear coloring is a 3-frugal coloring, so there are at least ⌈d/2⌉ distinct colors in the neighborhood
of eachd-vertex. Thus we have the following bound:

Proposition 1 If G is a graph with maximum degree∆, thenΛ(G) ≥ ⌈∆/2⌉+ 1.

As Λl(G) ≥ Λ(G) for every graphG, we also haveΛl(G) ≥ ⌈∆/2⌉+ 1. Moreover, this bound
is tight for some families of graphs, such as trees.

Proposition 2 If G is a tree with maximum degree∆, thenΛl(G) = ⌈∆/2⌉+ 1.

Proof. Let L be an assignment of color lists of size at least⌈∆/2⌉ + 1 to the vertices ofG. We
proceed by induction on the order of the graph. Letv be a leaf ofG, and letu bev’s neighbor. By
the induction assumption, there exists a linearL-coloringc of G\v. We now extendc to v by finding
a colorc(v) ∈ L(v) such that the coloring obtained is linear. We only forbid tov the colorc(u)
and the colors appearing at least twice inu’s neighborhood. This is sufficient to obtain a proper and
3-frugal coloring, and thus a linear coloring of the treeG. There are at most1+⌈∆/2⌉−1 = ⌈∆/2⌉
forbidden colors. Since|L(v)| ≥ ⌈∆/2⌉ + 1, it is possible to colorv with a color from its list. 2

Let Km,n be the complete bipartite graph with stable setsV andV ′ of sizem andn respectively.
We show the following result:

Proposition 3 If m ≥ n, Λl(Km,n) = Λ(Km,n) = ⌈m/2⌉+ n.

Proof. To prove thatΛ(Km,n) ≥ ⌈m/2⌉ + n, observe that if two vertices of a same setV or V ′

have the same color, then all the vertices of the other set must have distinct colors (otherwise there
would be a bicolored cycle of length four). Moreover a given color cannot appear more than twice in
V ∪ V ′ since otherwise the 3-frugality would not be respected. Hence, the best solution is to assign
each color to a pair of vertices in the largest set, and to color all the remaining vertices with distinct
colors (see Figure 1).
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Figure 1: A linear coloring ofK3,3.

We now prove thatΛl(Km,n) ≤ ⌈m/2⌉ + n, which completes the proof of Proposition 3. Let
L be an assignment of lists of size at least⌈m/2⌉ + n for the vertices ofKm,n. We first color the
verticesvi of V (the largest set) : we only forbid tovi the colors appearing already two times among
the already colored vertices. We then color the verticesv′i of V ′ : we forbid to eachv′i all the colors
that have already been used. With lists of size at least⌈m/2⌉ + n, it is possible to color all the
vertices, and the final coloring is linear. 2

Observe that the linear (list-)chromatic number ofKn,n is asymptotically equivalent to3∆2 .

A 2-degenerategraphG is a graph such that every subgraph ofG contains a vertex of degree at
most two. We prove the following proposition:

Proposition 4 If G is a 2-degenerate graph of maximum degree∆, thenΛl(G) ≤ ∆ + 2.

Proof. Let G be a counterexample of minimum order. There exists an assignmentL of lists (with
|L(v)| ≥ ∆ + 2 for all v) such thatG is not linearlyL-colorable. We show thatG does not contain
any≤2-vertex.

Let v be a vertex of degree one inG. The graphG\v is a proper subgraph ofG, thus it is a
2-degenerate graph with order strictly less than that ofG. by the minimality ofG, there exists a
linearL-coloringc of G\v. By coloring the vertexv with a color from its listL(v), we extend the
coloring c to the whole graphG, thus obtaining a contradiction. We choose forv a color distinct
from the color of its neighborw and from the colors appearing twice inw’s neighborhood. At most
⌈∆/2⌉ − 1 + 1 = ⌈∆/2⌉ colors are forbidden tov, so it is possible to color it with a color from its
list L(v), as|L(v)| ≥ ∆ + 2.

We now prove thatG does not contain any vertex of degree two. Letv be a vertex of degree
two in G, with neighborsu andw. As previously, the graphG\v is 2-degenerate with order strictly
less thanG, so there exists a linearL-coloringc of G\v. Let us extend the coloringc to the whole
graphG, i.e. find a colorc(v) ∈ L(v) such that the coloring obtained is linear. We forbid tov the
colors belonging to the setC defined as follows. A colora is in C if one of the following conditions
is verified :

• one neighbor ofu and one neighbor ofw are both colored witha (a bicolored cycle could be
created ifv was also colored witha);

• two neighbors ofu are colored witha (the 3-frugality ofu would not be preserved ifv was
also colored witha);

• two neighbors ofw are colored witha (3-frugality ofw).

Observe that|C| ≤ ∆ − 1, since any color ofC appears at least twice among the vertices adja-
cent tou or w. Sincev must receive a color distinct from the colors ofu andw, there are at most
∆ − 1 + 2 = ∆ + 1 forbidden colors. As|L(v)| ≥ ∆ + 2, there remains at least one color inL(v)
that can be assigned tov. We obtain a linearL-coloring ofG, which is a contradiction.
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We proved that the 2-degenerate graphG does not contain any≤2-vertices. The contradiction
completes the proof. 2

Since outerplanar graphs are 2-degenerate, we obtain the following corollary:

Corollary 1 If G is outerplanar, thenΛl(G) ≤ ∆ + 2.

3 Graphs with small maximum degree

3.1 Subcubic graphs

As seen in the previous section, the graphK3,3 is not linearly 4-colorable. LetG be a graph with
maximum degree three, containing at least one≤2-vertex. ThenG is 2-degenerate and we have
Λl(G) ≤ 5 by Proposition 4. So the hardest part is to prove that 3-regular graphs have linear list-
chromatic number at most five. To show this, we prove a slightly stronger statement:

Theorem 1 Let G be a graph with maximum degree∆ ≤ 3, andL be an assignment of lists of
size at least five to the vertices ofG. Then there exists a linearL-coloring ofG such that the two
neighbors of any 2-vertex have distinct colors.

Proof. Let G be a counterexample of minimum order. There exists an assignmentL of lists (with
|L(v)| ≥ 5 for all v) such that there exists no linearL-coloring ofG with the property that the two
neighbors of any 2-vertex have distinct colors. We can assume thatG is connected, otherwise one
of the connected components would be a smaller counterexample to the theorem. IfG contains a
1-vertexv adjacent to a vertexu, then by the minimality ofG, the graphG\v has a linearL-coloring
c such that the neighbors of any 2-vertex have distinct colors. By coloringv with a color distinct
from c(u) and from the colors the neighbors ofu, we obtain a linearL-coloring ofG such that the
neighbors of any 2-vertex have distinct colors, which is a contradiction.

If G contains a 2-vertexv with neighborsu andw, let H be the graph obtained fromG by re-
moving the vertexv and adding an edgeuw if it does not already exist.H has maximum degree at
most three and is smaller thanG, so there exists a linearL-coloringc of H , such that the neighbors
of any 2-vertex have distinct colors. We choose forv a color distinct fromc(u), c(w), and from the
colors appearing twice in the neighborhood ofu, or twice in the neighborhood ofw. This forbids at
most four colors tov, so we obtain a linearL-coloring ofG such that the neighbors of any 2-vertex
have distinct colors.

Thus, the graphG is 3-regular. IfG is a tree, it is linearly 3-choosable, so we can assume thatG
contains a shortest cycleu1, . . . , uk, with k ≥ 3. For all1 ≤ i ≤ k, we denote byvi the neighbor
of ui outside the cycle (that is, distinct fromui−1 andui+1, where all values are taken modulok).
Observe that two verticesvi andvj could be the same vertex, but that eachvi is distinct from all the
verticesuj , since otherwise the cycle would not be minimal. LetH be the graph obtained fromG by
removing the verticesu1, . . . , uk. By the minimality ofG, there exists a linearL-coloringc of H ,
such that the neighbors of any 2-vertex have distinct colors. In particular, each vertexvi has degree
at most two inH , so its neighbors have distinct colors and the 3-frugality of vi will be preserved
regardless of the color we assign toui.

We now color the verticesu1, . . . , uk in this order. We choose foru1 a color distinct fromc(v1)
andc(v2). For any2 ≤ i ≤ k−1, we choose forui a color distinct fromc(ui−1), c(vi), andc(vi+1).
For uk, we choose a color distinct fromc(u1), c(uk−1), c(vk), andc(v1). By doing so, we prevent
any bicolored cycle containing a vertexvi, and the 3-frugality of every vertexui is respected. But at
this point, the cycleu1, . . . , uk could still be a bicolored cycle. Hence, ifk ≥ 4, we also forbid the
color ofu1 to u3 while we are coloring this vertex. At most four colors are forbidden to each vertex
ui, so we can choose a colorc(ui) ∈ L(ui) for any of them, and the coloring obtained is a linear
L-coloring of G. SinceG is 3-regular, the additional property that the neighbors ofany 2-vertex
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have distinct colors is trivially verified. This contracticts the assumption thatG is a counterexample
to the theorem. 2

Since the linear list-chromatic number ofK3,3 is 5, we propose the following conjecture :

Conjecture 1 If G has maximum degree∆ ≤ 3, and is different fromK3,3, thenΛl(G) ≤ 4.

3.2 Graphs with maximum degree 4

According to Proposition 3, we haveΛl(K4,4) = 6. Applying the same method of reducible config-
urations to graphs with maximum degree 4, we obtain the following theorem, which we suspect not
to be tight.

Theorem 2 If G is a graph with maximum degree∆ ≤ 4, thenΛl(G) ≤ 9.

Proof. Let G be a counterexample of minimum order : there exists an assignmentL of lists (with
|L(v)| ≥ 9 for all v) such thatG is not linearlyL-colorable. Using the same arguments as in the
previous proof, we show thatG does not contain any≤3-vertex. So the graph is 4-regular. We now
show thatG does not contain any 4-vertices.

Let u be a 4-vertex adjacent to the verticesv, w, x, andy. Let G′ be the graph with vertex set
V (G)\{v} and edge setE(G)\{uv, uw, ux, uy}∪ {vw, xy} (see Figure 2). Note that the edgesvw
andxy may already exist inG. Let c be a linearL-coloring ofG′. We now extendc to the initial
graphG : we only have to color the vertexu with a color from its listL(u). We have to choose a
color distinct from the colors ofv, w, x, andy. The condition of 3-frugality for these four vertices
forbids at most four additional colors. Ifv, w, x, andy have distinct colors, it is impossible to create
a bicolored cycle, so we can coloru with the ninth color ofL(u), and thus obtain a linearL-coloring
of G.

Otherwise, we have for examplec(v) = c(y) andc(w) 6= c(x). The neighbors ofu forbid only
three colors, and their 3-frugality forbids at most 4 colors. But it is possible to create a bicolored
cycle passing throughv andy. To avoid this, we forbid tou the colors ofv’s neighbors. This makes
only two additional colors, as the third one was already counted to ensurev’s 3-frugality. There are
still at most eight forbidden colors for the choice ofc(u).

In the last case, we have without loss of generalityc(v) = c(x) andc(w) = c(y). The neighbors
of u forbid two colors to this vertex. To ensure the 3-frugality of v, w, x, andy we forbid at most
four other colors tou. To prevent any bicolored cycle it suffices to forbid tou the colors ofv’s and
w’s neighbors (six colors, among which two have already been counted). This makes at most eight
forbidden colors for the choice ofu. So it is possible to color this vertex with a color of its list, and
to obtain a linearL-coloring ofG. This completes the proof.

w

v

x

v

y

x

wy

v

x

u y uw

Figure 2: Elimination of a 4-vertex.
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4 Outerplanar graphs

An outerplanar graph is a graph having a planar representation such that all the vertices are on the
external face. In [2], Bonichon, Gavoille, and Hanusse proved that any outerplanar graphG could
be decomposed into a rooted spanning treeT (G) corresponding to a depth-first searchv1, . . . , vn in
G, and a precise set of edgesM(G). Let f : V (G) → V (G) be the function defined as follows :

f : vi 7→

{

f(vi−1), if vi−1 is vi’s father,
vj a brother ofvi with j the maximum index smaller thani, else.

The set of edgesM(G) is defined as{vf(v), v ∈ V (G)}∩E(G) (see Figure 3, where we orient the
edges ofM(G) from v to f(v) for more clarity). Using this decomposition, we show that a greedy
algorithm based on a depth-first search in the spanning tree will enable us to color any outerplanar
graph given lists of size at least⌈∆/2⌉ + 2.

The original A specific

outerplanar graphG spanning treeT(G)

The decomposition of

G into T(G) and the

set of edgesM(G)

arcs
−−−→
v f(v), v∈ V(G)

T(G), plus all the

v1

v2

vn

v1

v2

vn

v1

v2

vn

Figure 3: Decomposition of an outerplanar graph

Theorem 3 If G is an outerplanar graph with maximum degree∆, thenΛl(G) ≤ ⌈∆/2⌉ + 2.

Proof. Let L be a list assignment for the vertices ofG (with |L(v)| ≥ ⌈∆/2⌉ + 2 for all v). We
color the vertices ofG during a depth-first search in the spanning tree of the Bonichonet al. decom-
position. Afteri − 1 steps we color the vertexvi. We have to make a distinction between two types
of vertices : thevi whose father isvi−1, and the others.

vi−1

vi

vj

Figure 4: First type of vertices.

For the first type of vertices (see figure 4), there are two possible situations. Ifvi−1 andvj are
adjacent inG, then they must have different colors and we are certain thatno bicolored cycle will
be created. We forbid tovi the colors ofvi−1, vj , plus the colors repeated exactly twice invj ’s
neighborhood. It makes in total⌈∆/2⌉ + 1 forbidden colors : there remains at least one possible
color in the list ofvi. If vi−1 andvj are not adjacent whilevi−1 andvj have different colors, we are
in the same situation as previously. Ifvi−1 andvj have the same color, a bicolored cycle could be
created. To avoid it, we add the color ofvi−1 in the set of the forbidden colors, whose number stays
under⌈∆/2⌉+ 1. Again, there remains at least one possible color in the listof vi.

For the second type of vertices (see figure 5) we also make the distinction between two cases. If
vi is adjacent tovj = f(vi) in G, we forbid the colors ofvk, vj , plus the colors repeated twice in
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vk

vi

vj

Figure 5: Second type of vertices.

N(vk)\vj , thus less than⌊∆/2⌋ + 1 colors. Ifvi is not adjacent tovj , the forbidden colors are only
the color ofvk plus the colors repeated twice inN(vk), thus less than⌈∆/2⌉ colors. In each case
we will be able to colorvi with a color from its list.

This gives a linear algorithm (the decomposition being linear itself, according to [2]), coloring
any outerplanar graph linearly given an assigment of lists of size at least⌈∆/2⌉+ 2. 2

5 Graphs with bounded maximum average degree

Let G be a graph, the maximum average degree ofG, denoted byMad(G) is defined by:

Mad(G) = max{2|E(H)|/|V (H)|, H ⊆ G}.

Notice that the maximum average degree of a graph can be computed in polynomial time by using
theMatroid Partitioning Algorithmdue to Edmonds [5, 11].

Theorem 4 LetG be a graph with maximum degree∆:

1. If ∆ ≥ 3 andMad(G) < 16
7 , thenΛl(G) =

⌈

∆
2

⌉

+ 1.

2. If Mad(G) < 5
2 , thenΛl(G) ≤

⌈

∆
2

⌉

+ 2.

3. If Mad(G) < 8
3 , thenΛl(G) ≤

⌈

∆
2

⌉

+ 3.

Since every planar or projective-planar graphG with girth g(G) verifiesMad(G) < 2g(G)
g(G)−2 , we

obtain the following corollary:

Corollary 2 LetG be a planar or projective-planar graph with maximum degree∆:

1. If ∆ ≥ 3 andg(G) ≥ 16, thenΛl(G) =
⌈

∆
2

⌉

+ 1.

2. If g(G) ≥ 10, thenΛl(G) ≤
⌈

∆
2

⌉

+ 2.

3. If g(G) ≥ 8, thenΛl(G) ≤
⌈

∆
2

⌉

+ 3.

Observe that cycles are linearly 3-choosable; hence, we cannot remove the condition on∆ in
Theorem 4.1 and Corollary 2.1.
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Proof of Theorem 4.1 Let G be a counterexample of minimum order, with∆ ≥ 3 andMad(G) <
16
7 . There exists an assignment of lists of size at least⌈∆

2 ⌉+1 such thatG is not linearlyL-colorable.
Using the method of reducible configurations, we first prove thatG satisfies the following claim:

Claim 1 G does not contain any of the following configurations:

(C1.1) a 1-vertex,

(C1.2) a 2-vertex adjacent to two 2-vertices,

(C1.3) a 3-vertex adjacent to three 2-vertices, each of themadjacent to a 2-vertex.

Proof.

(C1.1) If G contains a 1-vertexv, let c be a linearL-coloring of G\v (which exists asG\v is a
subgraph ofG and thus verifiesMad(G\v) < 16

7 ). We now extendc to v : the neighbor
u of v forbids one color; we also have to preserveu’s 3-frugality: among itsd already col-
ored neighbors (d ≤ ∆ − 1), there are at worst⌈∆

2 ⌉ − 1 pairs of vertices having the same
color. This forbids at most⌈∆

2 ⌉ colors tov. Thusv can be colored with a remaining color
in its listL(v), and the coloring obtained is a linearL-coloring ofG, which is a contradiction.

(C1.2) If G contains a 2-vertexv adjacent to two 2-verticesu andw, we color the graphG\v lin-
early with colors belonging to the lists ofL (it is possible by the minimality ofG). If u and
w have distinct colors, we choose forv a color distinct from the colors of its neighbors, and
it is impossible to create a bicolored cycle. Ifu andw have the same color, we forbid it tov,
as well as the color of the second neighbor ofu. This prevents the creation of any bicolored
cycle. There are at most two forbidden colors, what enables us to colorv since⌈∆

2 ⌉+ 1 ≥ 3
when∆ ≥ 3.

v2 v2 v1

w1

w2w2

x3 x3

u

v2 v1

u

x1

x2

x3

w1

w2

x1

x2
x2

Figure 6: Elimination of Configuration (C1.3).

(C1.3) If G contains a 3-vertex adjacent to three 2-vertices, each of them being adjacent to an-
other 2-vertex, then we color the reduced graphH obtained fromG by removing the ver-
ticesu, v1, w1, andx1 (see Figure 6). This reduced graphH is a subgraph ofG, and so
Mad(H) < 16/7. We now have to color the verticesu, v1, w1, andx1. Forv1, we choose
a color different from the color ofv2. Forw1 we take a color different from those ofw2 and
v1. We coloru with a color different from those ofv1 andw1. For the last vertex, we have
to handle two different cases : ifu andx2 have different colors it is impossible to create any
bicolored cycle, so we can take forx1 a color different from those ofu andx2. If u and
x2 have the same color, we choose forx1 a color different from those ofx2 andx3 (what
prevents bicolored cycles coming fromx3). As in the previous situation, there are at most
two forbidden colors for each vertex, what enables us to color each of them with a color of
its own list. We then obtain a linearL-coloring ofG, which is a contradiction.
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We complete the proof of Theorem 4.1 with a discharging procedure. First, we assign to each
vertexv a chargeω(v) equal to its degree. We then apply the following dischargingrules:

Rule 1. Each≥4-vertex gives2
7 to each adjacent 2-vertex.

Rule 2. Each 3-vertex gives27 to each adjacent 2-vertex neighbor of another 2-vertex, and1
7 to each

adjacent 2-vertex which is not neighbor of a 2-vertex.

Let ω∗(v) be the charge ofv after the procedure. Letv be ak-vertex (k ≥ 2, asG does not
contain Configuration (C1.1)).

• If k = 2, v receives2
7 if it is adjacent to a≥4-vertex or to a 3-vertex and a 2-vertex. Elsev

must be adjacent to two 3-vertices (Configuration (C1.2) does not appear in the graph), and
will receive two times1

7 , soω∗(v) ≥ 2 + 2
7 = 16

7 .

• If k = 3, v gives at most27 + 2
7 + 1

7 (the graph does not contain Configuration (C1.3)), thus
ω∗(v) ≥ 3 − 5

7 = 16
7 .

• If k ≥ 4, then by Rule 1ω∗(v) ≥ k − k × 2
7 ≥ 20

7 .

In any case,ω∗(v) ≥ 16
7 , so

∑

v∈V (G) ω∗(v) ≥ 16n
7 . Since

∑

v∈V (G) ω∗(v) =
∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:

Mad(G) ≥
2|E(G)|

|V (G)|
=

∑

v∈V (G) ω∗(v)

|V (G)|
≥

16/7|V (G)|

|V (G)|
=

16

7

We obtain a contradiction, asMad(G) < 16
7 according to the the definition ofG.

Proof of Theorem 4.2 Let G be a counterexample of minimum order, withMad(G) < 5
2 . There

exists an assignmentL of lists of size⌈∆
2 ⌉ + 2 such thatG is not linearlyL-colorable. Using the

method of reducible configurations, we first prove thatG satisfies the following claim:

Claim 2 G does not contain any of the following configurations:

(C2.1) a 1-vertex,

(C2.2) two adjacent 2-vertices,

(C2.3) a 3-vertex adjacent to three 2-vertices.

Proof.

(C2.1) The case of the 1-vertex has already been handled in the previous proof (see Configuration
(C1.1)).

(C2.2) If G contains two adjacent 2-verticesv andw, let c be a linearL-coloring ofG\{v, w} (see
Figure 7). We extendc to the whole graph by finding colorsc(v) ∈ L(v) andc(w) ∈ L(w)
for v andw such that the new coloringc is a linear coloring ofG. Forv, we choose a color
distinct from those ofu andx. We also need to preserveu’s 3-frugality; by doing this we
forbid at most⌈∆

2 ⌉− 1 other colors tov. We take forw a color different from those ofv and
x; x’s 3-frugality also forbids at most⌈∆

2 ⌉ − 1 other colors tow. At most⌈∆
2 ⌉ + 1 colors

are forbidden tov andw, so it is possible to color them with colors from their own lists. We
obtain a linearL-coloring ofG, which is a contradiction.

9



u u v w xxu v w x

Figure 7: Elimination of Configuration (C2.2).

(C2.3) If G contains a 3-vertex adjacent to three 2-vertices, letc be a linearL-coloring of the re-
duced graphH obtained fromG by removing the verticesu, x1, andw1 (see Figure 8). In
order to extendc to the whole graphG, we have to find colors for the remaining vertices:
w1, x1, andu. We choose forw1 a color distinct from the colors ofw2 andv1, and from
the at most⌈∆

2 ⌉ − 1 colors appearing twice inw2’s neighborhood. We take foru a color
different from those ofv1, w1, andx2. Finally we forbid tox1 the colors ofx2 andu, as well
as most⌈∆

2 ⌉ − 1 colors appearing twice inx2’s neighborhood. Such a coloring preserves
the property of 3-frugality of all the vertices, and sincec(w1) 6= c(v1) andc(u) 6= c(x2) no
bicolored cycle can be created. So we can color each of these vertices with a color from its
own list in order to obtain a linearL-coloring ofG, which is a contradiction.

v1

v2

x2 w2

v1

v2

w1

u

w2

x1
x2

v2

v1

w1

w2

u
x1

x2

Figure 8: Elimination of Configuration (C2.3).

2

We complete the proof of Theorem 4.2 with a discharging procedure. First, we assign to each
vertexv a chargeω(v) equal to its degree. We then apply the following dischargingrule:

Rule. Each≥3-vertex gives1
4 to each adjacent 2-vertex.

Let ω∗(v) be the charge ofv after the procedure. Letv be ak-vertex ofG (k ≥ 2, asG does not
contain Configuration (C2.1)).

• If k = 2, v is adjacent to two≥3-vertices (the graph does not contain Configuration (C2.2)),
thusω∗(v) ≥ 2 + 2 × 1

4 = 5
2 .

• If k = 3, v is adjacent to at most two 2-vertices (the graph does not contain Configuration
(C2.3)), thusω∗(v) ≥ 3 − 2 × 1

4 = 5
2 .

• If k ≥ 4, v can be adjacent tok 2-vertices, soω∗(v) ≥ k − k × 1
4 ≥ 3.

In any case,ω∗(v) ≥ 5
2 , donc

∑

v∈V (G) ω∗(v) ≥ 5n
2 . Since

∑

v∈V (G) ω∗(v) =
∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:

Mad(G) ≥
2|E(G)|

|V (G)|
=

∑

v∈V (G) ω∗(v)

|V (G)|
≥

5/2|V (G)|

|V (G)|
=

5

2

We obtain a contradiction, asMad(G) < 5
2 according to the the definition ofG.
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Proof of Theorem 4.3 Let G be a counterexample of minimum order, withMad(G) < 8
3 . There

exists an assigmentL of lists of size⌈∆
2 ⌉ + 3 such thatG is not linearlyL-colorable. Using the

method of reducible configurations, we first show thatG satisfied the following claim:

Claim 3 G does not contain any of the following configurations:

(C3.1) a 1-vertex,

(C3.2) two adjacent 2-vertices,

(C3.3) a 3-vertex adjacent to two 2-vertices.

Proof.

(C3.1) see Configuration (C1.1).

(C3.2) see Configuration (C2.2).

(C3.3) If G contains a 3-vertex adjacent to two 2-vertices, letc be a linearL-coloring of the re-
duced graphH obtained fromG by removing the verticesu, x1, andw1 (see Figure 9. This
coloring exists, asH is a subgraph ofG, and thusMad(H) ≤ Mad(G) < 8

3 . We ex-
tendc to the whole graphG, by coloringw1, x1, andu with colors ofL(w1), L(x1), and
L(u) respectively. We take forw1 a color different from the colors ofv andw2, and from
the ⌈∆

2 ⌉ − 1 colors appearing twice inw2’s neighborhood. We then coloru with a color
different from those ofw1, v, x2, and from the⌈∆

2 ⌉ − 1 colors appearing twice inv’s neigh-
bors (3-frugality ofv). Finally, we colorx1 with a color different from those ofu, x2, and
from at most⌈∆

2 ⌉ − 1 colors among the colors ofx2’s neighbors. So we can color each ver-
tex with a color from its list, and we obtain a linearL-coloring ofG, which is a contradiction.

v

u
x1

x2

w1

w2
x2 w2

v
v

u
w1

w2

x1

x2

Figure 9: Elimination of Configuration (C3.3).

2

We complete the proof of Theorem 4.3 with a discharging procedure. First, we assign to each
vertexv a chargeω(v) equal to its degree. We then apply the following dischargingrule:

Rule. Each≥3-vertex gives1
3 to each adjacent 2-vertex.

Let ω∗(v) be the charge ofv after the procedure. Letv be ak-vertex ofG (k ≥ 2, asG does not
contain Configuration (C3.1)).

• If k = 2, v is adjacent to two≥3-vertices (G does not contain Configuration (C3.2)), thus
ω∗(v) ≥ 2 + 2 × 1

3 = 8
3 .

• If k = 3, v is adjacent to at most one 2-vertex (G does not contain Configuration (C3.3)), thus
ω∗(v) ≥ 3 − 1

3 = 8
3 .

• If k ≥ 4, v can be adjacent tok 2-vertices, thusω∗(v) ≥ k − k × 1
3 ≥ 8

3 .
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In any case,ω∗(v) ≥ 8
3 , so

∑

v∈V (G) ω∗(v) ≥ 8n
3 . Since

∑

v∈V (G) ω∗(v) =
∑

v∈V (G) ω(v) =
∑

v∈V (G) d(v) = 2|E(G)|, we have:

Mad(G) ≥
2|E(G)|

|V (G)|
=

∑

v∈V (G) ω∗(v)

|V (G)|
≥

8/3|V (G)|

|V (G)|
=

8

3

We obtain a contradiction, asMad(G) < 8
3 according to the the definition ofG.

6 Planar Graphs

The squareG2 of a graphG is defined byV (G2) = V (G), and two vertices are adjacent inG2 if
and only if they are at distance one or two inG. We notice that a proper coloring ofG2 is a linear
coloring ofG : all the neighbors of a vertexv in G have distinct colors, so the 3-frugality of each
vertex is respected, and there are no bicolored paths of length three (and no bicolored cycle, as a
consequence).

The best known bound for the chromatic number of the square ofa planar graph was obtained by
Molloy and Salavatipour (see [10]). They show that ifG is a planar graph, thenχ(G2) ≤ ⌈ 5

3∆⌉+78
( ⌈ 5

3∆⌉ + 25 if ∆ ≥ 241). The following proposition is a direct consequence of thisresult:

Observation 1 LetG be a planar graph with maximum degree∆, then

Λ(G) ≤

{

⌈ 5
3∆⌉ + 78,

⌈ 5
3∆⌉ + 25 if ∆ ≥ 241.

Using a structural lemma from Van den Heuvel and McGuiness in[14], we prove the following
result, which improves Observation 1.

Theorem 5 If G is a planar graph with maximum degree∆ ≥ 12, thenΛl(G) ≤ ∆ + 26.

Proof. Let G be a counterexample with minimum order. There exists an assignmentL of lists of
size at least∆+26 such thatG is not linearlyL-colorable. In [14], the authors proved the following
lemma:

Lemma 1 (Van den Heuvel, McGuinness 2003) LetG be a planar simple graph. Then there exists
a vertexv with k neighborsv1, . . . , vk with d(v1) ≤ · · · ≤ d(vk) such that one of the following is
true:

(i) k ≤ 2;

(ii) k = 3 with d(v1) ≤ 11;

(iii) k = 4 with d(v1) ≤ 7 andd(v2) ≤ 11;

(iv) k = 5 with d(v1) ≤ 6, d(v2) ≤ 7 andd(v3) ≤ 11.

Let k, v, v1, . . . , vk be as in Lemma 1, and letG′ be the graph obtained fromG by contracting
the edgevv1 into the vertexv1. This graph has maximum degree 12 (case (ii)) or∆, so by the min-
imality of G there exists a linear coloringc of G′ such that any vertexu ∈ V (G′) is colored with a
colorc(u) ∈ L(u). In order to extendc to G, we only need to colorv with a color from its listL(v).
Choose the color ofv different from the colors ofv1, . . . , vk as well as the colors of the neighbors of
v1, . . . , vk−2 if k ≥ 3. Choose it also different from the colors appearing twice among the vertices
adjacent tovk−1 or vk. In total we forbid at most5 + 5 + 6 + 10 + (2∆− 2)/2 = ∆ + 25 colors to
v. Since|L(v)| ≥ ∆ + 26, it is possible to find an appropriate color for this vertex.
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We now prove that the coloring obtained is linear. Since the coloring c of G′ is linear, no color
appears more than twice in the neighborhood ofv in G. If k ≥ 3, the colors of the neighbors of
v1, . . . , vk−2 are forbidden tov, so the 3-frugality ofv1, . . . , vk−2 is preserved and any bicolored
cycle passing throughv containsvk−1 andvk. The colors appearing twice inN(vk−1) or twice
in N(vk) are forbidden, so the 3-frugality ofvk−1 andvk is preserved. The colors appearing in
N(vk−1) andN(vk) are also forbidden, sov cannot belong to any bicolored cycle. We thus obtain
a linearL-coloring ofG, which is a contradiction. 2

7 NP-completeness

Theorem 6 Deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-
complete problem.

Proof. The proof of the NP-completeness proceeds by a reduction tothe problem of 3-coloring
of planar graphs, that is an NP-complete problem [7]. Given an instance of this problem –a planar
graphH , we need to create a bipartite subcubic planar graphG of a size polynomial in|V (H)| such
thatG is linearly 3-colorable if and only ifH is 3-colorable.

Let M be the7 × 2 grid (see Figure 10). Observe that in any linear 3-coloringc of M, we have
c(x1) = c(x2) andc(y1) = c(y2).

ca

b

b

c

c

a

a

b

b

c a

a

b

x2

y2

x1

y1

Figure 10: A linear 3-coloring of the graphM.

Let N (z1, z2) be the graph depicted in Figure 11. This graph is bipartite, subcubic, planar, and
linearly 3-colorable. Moreover, by the property ofM we havec(z1) = c(z2) in any linear 3-coloring
c of N .

a

a b

a
c

c

ac

b

c

b c

b

a b

b

a

a

b c

b

c

b

a

c

c a

c a b

a

c

b
az1 z2

Figure 11: The graphN (z1, z2). The two stable sets are represented with white and black dots
respectively.

To make the reduction, we first replace eachd-vertexu ∈ V (H) by a treeTu with maximum
degree at most 3, havingd leaves (each leafuv corresponds to a link to a neighborv of u in H).
We then replace each edgexy of these trees by the graphN (x, y). We then link each vertexuv to
the vertexvu by an edge (see Figure 12). Each tree is bipartite, but our construction may not be

13



bipartite at this point : if we color each treeTu properly with the colorsblackandwhite, two leaves
vw andwv may be colored with the same color. If this is the case, we subdivide the edgevwwv,
thus creating a new vertexmvw adjacent tovw andwv. We then replace the edgevwmvw by the
graphN (vw , mvw). We repeat this process until the graph obtained is properly2-colorable, and thus
bipartite.

Tv
Tu

v u v
uv uvu

Figure 12: Transformation of the planar graph into a subcubic bipartite planar graph.

The graphG obtained is planar, bipartite, and subcubic. Each vertex ofthe treeTu receives the
color of u in the 3-coloring ofH . This 3-coloring of the graphG is linear : there is no problem of
3-frugality in the trees, and there are no bicolored cycle (there are no bicolored paths of size at least
four in the widgets).

Conversely, in a linear 3-coloring ofG, the vertices of a given treeTu have the same color, which
can be used to coloru in H . So we easily obtain a 3-coloring ofH . 2

We could have used a4 × 2 grid instead of a7 × 2 grid to build the widget. All the properties
would have been conserved, but the widget would not have beenbipartite (it would have contained
someC5). The theorem of NP-completeness would have been a little weaker.

8 Conclusion

An interesting problem would be to find families of planar graphs whose linear chromatic number
would bea∆+ b, with 1

2 < a ≤ 1 (if such a family exists): we do not know if the bound of Theorem
5 is tight for a certain class of graph. It is also an open problem to know whetherΛl(G) = Λ(G) for
every graphG.

A generalization of linear coloring can be made, by replacing the condition of 3-frugality by a
condition ofk-frugality. More precisely, we define thek-forested coloringof a graphG as a proper
coloring of the vertices ofG such that the union of any two color classes is a forest of maximum
degree at mostk−1. Thek-forested numberof a graphG, denoted byΛk(G), is the smallest number
of colors appearing in ak-forested coloring ofG.

The lower bound of Proposition 1 can be easily generalized toΛk(G) ≥ ⌈ ∆
k−1⌉+ 1 for all graph

G of maximum degree∆. The example described by Yuster in [16] can also be generalized ink

dimensions in order to prove thatΛk(G) = Ω(∆
k

k−1 ). However, this construction is less interesting
than the construction of Alon, McDiarmid and Reed [1] for theacyclic chromatic number as soon as
k ≥ 5.
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