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Abstract

A proper vertex coloring of a non oriented graghis linear if the graph induced by the
vertices of any two color classes is a forest of paths. A gr@pis linearly L-list colorable if
for a given list assignment = {L(v) : v € V(G)}, there exists a linear coloringof G such
thatc(v) € L(v) forallv € V(G). If G is linearly L-list colorable for any list assignment
with |L(v)| > k for all v € V(G), thenG is said to be linearlys-choosable. In this paper,
we investigate the linear choosability for some familiegdphs: graphs with small maximum
degree, with given maximum average degree, outerplanaplandr graphs. Moreover, we prove
that deciding whether a bipartite subcubic planar grapméesally 3-colorable is an NP-complete
problem.

1 Introduction

The notion of acyclic colorings was introduced by Grinba@irin 1973 : a vertex coloring is said
to be acyclic if it is proper (no two adjacent vertices hawedshme color), and if there is no bicolored
cycle (the subgraph induced by the union of any two colorseass a forest).

A coloring ¢ such that for every vertex € V(G), no color appears more than- 1 times in the
neighborhood of, is called ak-frugal coloring. The notion ok-frugality was introduced by Hind,
Molloy, and Reed in [9].

Yuster mixed these two notions in [16], while introducing ttoncept of linear coloring. Anear
coloringof a non-oriented graph is an acyclic and 3-frugal colorihgan also be seen as a coloring
such that the subgraph induced by the union of any two colssels is a forest of paths (an acyclic
graph with maximum degree at most two). Tlireear chromatic numbeof a graphG, denoted by
A(G), is the minimum number of colors in a linear coloring@f

Yuster proved in [16] that(G) = O(A(G)3/?) in the general case, and he constructed graphs
for which A(G) = Q(A(G)?/?).

The concept of choosability was introduced by Vizing [15jd&s, Rubin, and Taylor [6]. This
generalization of the notion of coloring has been appliaeditious problems, and more particulary to
the field of coloring under constraints (acyclic choos&p(i8], («, b)-choosability [13]k-improper
[-choosability [12]). In this paper, we investigate the &nehoosability for some families of graphs.

A graphG is linearly L-colorable if for a given list assignmeiit= {L(v) : v € V(G)}, there
exists a linear coloring of G such that:(v) € L(v) for each vertexw. Such a coloring is called
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alinear L-coloring of G. If G is linearly L-colorable for any assignmeiitverifying Vv € V(G),
|L(v)| > k, thenG is said to be linearly;-choosable. The smallest integesuch that the grapy
is linearly k-choosable is called tHaear list-chromatic numberdenoted by\!(G).

We begin with some definitions and basic results (Sectiosagtion 3 is dedicated to the study
of graphs with small maximum degree : we prove th&tG) < 5 whenA(G) < 3, andAY(G) < 9
whenA(G) < 4. In Section 4, we use a canonical decomposition to proveerty outerplanar
graphG with maximum degree\ verifiesA!(G) < [A/2] + 2. In section 5, we give bounds for
graphs with bounded maximum average degree. In Section @rowe that every planar graph of
maximum degre@\ > 12 verifiesA'(G) < A + 26. Finally, we prove that determining whether a
bipartite subcubic planar graph is linearly 3-colorablamsNP-complete problem (Section 7).

In the following, we recall some definitions and notationst & be a simple graph.€. without
multiple edges or loops)/ (G) its set of vertices and(G) its set of edges. Le¥ (v) be the neigh-
borhood of the vertex € V(G), i.e. the set of the vertices adjacentdo The degree of a vertex
v is denoted byl(v), and the maximum degree of the gra@hs denoted by\(G). A vertex with
degreed (resp. at most, at leastd) is called ad-vertex (resp=d—vertex,Zd—vertex). A graph is
saidd-regular if it only containgi-vertices.

A 3-frugal coloring was defined above as a proper colorindhefitertices of a graph, such that
no color appears more than twice in each neigbourhood. Ifofleving, we will also use a slight
abuse of notation, by saying that the 3-frugality of a ventes respectedor preservedwhen no
color appears more than twice M(v).

2 First results

Alinear coloring is a 3-frugal coloring, so there are at tda2] distinct colors in the neighborhood
of eachd-vertex. Thus we have the following bound:

Proposition 1 If G is a graph with maximum degre®, thenA(G) > [A/2] + 1.

As A(G) > A(G) for every graph, we also have\'(G) > [A/2] + 1. Moreover, this bound
is tight for some families of graphs, such as trees.

Proposition 2 If G is a tree with maximum degrek, thenA!(G) = [A/2] + 1.

Proof. Let L be an assignment of color lists of size at lepAt/2] + 1 to the vertices of7. We
proceed by induction on the order of the graph. Ldte a leaf ofGG, and letu bev’s neighbor. By
the induction assumption, there exists a linBazoloringc of G\v. We now extend to v by finding

a color¢(v) € L(v) such that the coloring obtained is linear. We only forbidvtthe colore(u)
and the colors appearing at least twiceuis neighborhood. This is sufficient to obtain a proper and
3-frugal coloring, and thus a linear coloring of the tt@eThere are at modt+ [A/2] —1 = [A/2]
forbidden colors. Sincgl(v)| > [A/2] + 1, itis possible to colop with a color fromits list. O

Let K, ,, be the complete bipartite graph with stable déandV"’ of sizem andn respectively.
We show the following result:

Proposition 3 If m > n, AY(K,, ) = A(Kpn) = [m/2] +n.

Proof. To prove that\(X,, ,) > [m/2] + n, observe that if two vertices of a same $eor V'
have the same color, then all the vertices of the other set have distinct colors (otherwise there
would be a bicolored cycle of length four). Moreover a giveloc cannot appear more than twice in
V U V' since otherwise the 3-frugality would not be respected.dgethe best solution is to assign
each color to a pair of vertices in the largest set, and tor@ldhe remaining vertices with distinct
colors (see Figure 1).



Figure 1: A linear coloring of(s 3.

We now prove that\!(K,, ,,) < [m/2] + n, which completes the proof of Proposition 3. Let
L be an assignment of lists of size at le&st/2] + n for the vertices off,,, ,,. We first color the
verticesy; of V' (the largest set) : we only forbid tg the colors appearing already two times among
the already colored vertices. We then color the vertigesf V' : we forbid to each; all the colors
that have already been used. With lists of size at I¢ast2] + n, it is possible to color all the
vertices, and the final coloring is linear. a

Observe that the linear (list-)chromatic numbetof ,, is asymptotically equivalent tézé.

A 2-degeneratgraphG is a graph such that every subgraphtgtontains a vertex of degree at
most two. We prove the following proposition:

Proposition 4 If G is a 2-degenerate graph of maximum degfeghenA!(G) < A + 2.

Proof. Let G be a counterexample of minimum order. There exists an as&gh/, of lists (with
|L(v)| > A + 2 for all v) such thatG is not linearly L-colorable. We show that does not contain
any <2-vertex.

Let v be a vertex of degree one . The graphG\v is a proper subgraph aF, thus it is a
2-degenerate graph with order strictly less than that/ofby the minimality ofG, there exists a
linear L-coloringc of G\v. By coloring the vertex with a color from its listL(v), we extend the
coloring ¢ to the whole graplty, thus obtaining a contradiction. We choose foa color distinct
from the color of its neighbow and from the colors appearing twiceqris neighborhood. At most
[A/2] =141 = [A/2] colors are forbidden to, so it is possible to color it with a color from its
list L(v), as|L(v)] > A + 2.

We now prove thatz does not contain any vertex of degree two. bdie a vertex of degree
two in G, with neighbors: andw. As previously, the grapti\ v is 2-degenerate with order strictly
less tharn7, so there exists a linedr-coloringc of G\v. Let us extend the coloringto the whole
graphg, i.e. find a colorc(v) € L(v) such that the coloring obtained is linear. We forbidstthe
colors belonging to the sétdefined as follows. A colo is in C if one of the following conditions
is verified :

e one neighbor of: and one neighbor af) are both colored witla, (a bicolored cycle could be
created ifv was also colored with);

e two neighbors ofu are colored withu (the 3-frugality ofu, would not be preserved if was
also colored withz);

e two neighbors ofv are colored with: (3-frugality of w).

Observe thafC| < A — 1, since any color o€ appears at least twice among the vertices adja-
cent tou or w. Sincev must receive a color distinct from the colorswfindw, there are at most
A —1+2=A+1forbidden colors. A$L(v)| > A + 2, there remains at least one color/itfw)
that can be assigned to We obtain a linear.-coloring of G, which is a contradiction.



We proved that the 2-degenerate graplioes not contain any2-vertices. The contradiction
completes the proof. =]

Since outerplanar graphs are 2-degenerate, we obtain ltbesifog corollary:

Corollary 1 If G is outerplanar, them\!(G) < A + 2.

3 Graphswith small maximum degree
3.1 Subcubic graphs

As seen in the previous section, the grdghs is not linearly 4-colorable. Let: be a graph with
maximum degree three, containing at least é2evertex. ThenG is 2-degenerate and we have
AY(G) < 5 by Proposition 4. So the hardest part is to prove that 3-eeguiaphs have linear list-
chromatic number at most five. To show this, we prove a shgéttionger statement:

Theorem 1 Let G be a graph with maximum degre® < 3, and L be an assignment of lists of
size at least five to the vertices@f Then there exists a linedr-coloring of G such that the two
neighbors of any 2-vertex have distinct colors.

Proof. LetG be a counterexample of minimum order. There exists an asgghl of lists (with
|L(v)| > 5 for all v) such that there exists no linearcoloring of G with the property that the two
neighbors of any 2-vertex have distinct colors. We can asstinatG is connected, otherwise one
of the connected components would be a smaller counterdeamphe theorem. If7 contains a
1-vertexv adjacent to a vertex, then by the minimality of7, the graphG'\ v has a lineaf.-coloring

¢ such that the neighbors of any 2-vertex have distinct col8gs coloring v with a color distinct
from ¢(u) and from the colors the neighbors@f we obtain a lineal-coloring of G such that the
neighbors of any 2-vertex have distinct colors, which is atediction.

If G contains a 2-vertex with neighborsu andw, let H be the graph obtained frod by re-
moving the vertex and adding an edgew if it does not already existd has maximum degree at
most three and is smaller th&# so there exists a linedr-coloringc of H, such that the neighbors
of any 2-vertex have distinct colors. We chooseda color distinct frome(u), ¢(w), and from the
colors appearing twice in the neighborhoodbr twice in the neighborhood aé. This forbids at
most four colors tas, so we obtain a lineak-coloring of G such that the neighbors of any 2-vertex
have distinct colors.

Thus, the graplds is 3-regular. IfG is a tree, it is linearly 3-choosable, so we can assuma&ihat
contains a shortest cycle, . .., ux, with £ > 3. Foralll < i < k, we denote by, the neighbor
of u; outside the cycle (that is, distinct from_, andw,.1, where all values are taken modup
Observe that two verticag andv; could be the same vertex, but that eagls distinct from all the
verticesu;, since otherwise the cycle would not be minimal. Iebe the graph obtained frod by
removing the vertices, ..., u;. By the minimality ofG, there exists a lineak-coloring ¢ of H,
such that the neighbors of any 2-vertex have distinct colorparticular, each vertex; has degree
at most two inH, so its neighbors have distinct colors and the 3-frugalfty,owill be preserved
regardless of the color we assigmip

We now color the verticesy, . . ., u in this order. We choose far; a color distinct frome(wv; )
andc(vq). Forany2 < i < k—1, we choose fotr; a color distinct frome(u;—1), ¢(v;), andc(v;41).
For ux, we choose a color distinct fronfuy ), c(ug—1), c(vg), ande(vr). By doing so, we prevent
any bicolored cycle containing a vertex and the 3-frugality of every vertay; is respected. But at
this point, the cyclesy, .. ., ux could still be a bicolored cycle. Hence kif> 4, we also forbid the
color of u; to ug while we are coloring this vertex. At most four colors aretfioiden to each vertex
u;, SO we can choose a colefu;) € L(u;) for any of them, and the coloring obtained is a linear
L-coloring of G. Since( is 3-regular, the additional property that the neighborsumy 2-vertex



have distinct colors is trivially verified. This contrad8dhe assumption thét is a counterexample
to the theorem. m]

Since the linear list-chromatic number &% 5 is 5, we propose the following conjecture :

Conjecturel If G has maximum degrek < 3, and is different fronk; 5, thenA!(G) < 4.

3.2 Graphswith maximum degree 4

According to Proposition 3, we have (K, 4) = 6. Applying the same method of reducible config-
urations to graphs with maximum degree 4, we obtain thevietlg theorem, which we suspect not
to be tight.

Theorem 2 If G is a graph with maximum degrek < 4, thenA!(G) < 9.

Proof. Let G be a counterexample of minimum order : there exists an assghl of lists (with
|L(v)| > 9 for all v) such thatG is not linearly L-colorable. Using the same arguments as in the
previous proof, we show that does not contain any3-vertex. So the graph is 4-regular. We now
show thatZ does not contain any 4-vertices.

Let u be a 4-vertex adjacent to the verticesw, x, andy. Let G’ be the graph with vertex set
V(G)\{v} and edge seb(G)\{uv, vw, uz, uy} U {vw, 2y} (see Figure 2). Note that the edges
andxy may already exist irfi. Letc be a linearL-coloring of G’. We now extend: to the initial
graphG : we only have to color the vertex with a color from its listZ(u). We have to choose a
color distinct from the colors of, w, x, andy. The condition of 3-frugality for these four vertices
forbids at most four additional colors. 4f w, =, andy have distinct colors, it is impossible to create
a bicolored cycle, so we can colemwith the ninth color ofZ(u), and thus obtain a linedr-coloring
of G.

Otherwise, we have for exampi€v) = ¢(y) ande(w) # ¢(z). The neighbors of. forbid only
three colors, and their 3-frugality forbids at most 4 coloBit it is possible to create a bicolored
cycle passing through andy. To avoid this, we forbid ta: the colors ofv’s neighbors. This makes
only two additional colors, as the third one was already tedito ensure’s 3-frugality. There are
still at most eight forbidden colors for the choiceddt:).

In the last case, we have without loss of generaliy) = ¢(z) andc(w) = ¢(y). The neighbors
of v forbid two colors to this vertex. To ensure the 3-frugalify.o w, x, andy we forbid at most
four other colors ta:. To prevent any bicolored cycle it suffices to forbicitdhe colors ofv’'s and
w's neighbors (six colors, among which two have already beemted). This makes at most eight
forbidden colors for the choice of. So it is possible to color this vertex with a color of its Jiahd
to obtain a linear-coloring of G. This completes the proof.

Figure 2: Elimination of a 4-vertex.



4 Outerplanar graphs

An outerplanar graph is a graph having a planar representatich that all the vertices are on the
external face. In [2], Bonichon, Gavoille, and Hanusse pdbthat any outerplanar gragh could
be decomposed into a rooted spanning #¢€') corresponding to a depth-first seargh. . ., v, in

G, and a precise set of edggs(G). Let f: V(G) — V(G) be the function defined as follows :

f' . f(vi,l), if v;_1 isv;'s father,
F Y v; a brother ofy; with j the maximum index smaller thapelse.

The set of edged/(G) is defined agv f(v),v € V(G)} N E(G) (see Figure 3, where we orient the
edges ofM (G) from v to f(v) for more clarity). Using this decomposition, we show thateegly
algorithm based on a depth-first search in the spanning tileenable us to color any outerplanar
graph given lists of size at leagf\ /2] + 2.

ISREING

The original A specmc T(G), plus all the The decomposition of
outerplanar grapls spanning tred (G arcsvf(v),ve V(G) Ginto T(G) and the
set of edged(G)

Figure 3: Decomposition of an outerplanar graph

Theorem 3 If G is an outerplanar graph with maximum degdethenA!(G) < [A/2] + 2.

Proof. Let L be a list assignment for the vertices@f(with |L(v)| > [A/2] + 2 for all v). We
color the vertices of7 during a depth-first search in the spanning tree of the Bamiet al. decom-
position. Afteri — 1 steps we color the vertax. We have to make a distinction between two types
of vertices : they; whose father i, _1, and the others.

Figure 4: First type of vertices.

For the first type of vertices (see figure 4), there are two iptessituations. Ifv;_; andv; are
adjacent inGG, then they must have different colors and we are certainrtbdiicolored cycle will
be created. We forbid te; the colors ofv;_, v;, plus the colors repeated exactly twiceuifis
neighborhood. It makes in totdA /2] + 1 forbidden colors : there remains at least one possible
color in the list ofv;. If v;_; andv; are not adjacent while;_; andv; have different colors, we are
in the same situation as previously.uf_; andv; have the same color, a bicolored cycle could be
created. To avoid it, we add the colorqf ; in the set of the forbidden colors, whose number stays
under[A/2] 4+ 1. Again, there remains at least one possible color in thefist.

For the second type of vertices (see figure 5) we also makestieation between two cases. If
v; is adjacent taw; = f(v;) in G, we forbid the colors oty, v;, plus the colors repeated twice in
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Figure 5: Second type of vertices.

N (vi)\vj, thus less thanA /2| + 1 colors. Ifv; is not adjacent te;, the forbidden colors are only
the color ofvy, plus the colors repeated twice i¥i(vy ), thus less thafA /2] colors. In each case
we will be able to colow; with a color from its list.

This gives a linear algorithm (the decomposition beingdinigself, according to [2]), coloring
any outerplanar graph linearly given an assigment of lifszz at leasf A /2] + 2. a

5 Graphswith bounded maximum average degree
Let G be a graph, the maximum average degre€ oflenoted by\/ ad(G) is defined by:

Mad(G) = max{2|E(H)|/|V(H)|,H C G}.

Notice that the maximum average degree of a graph can be dechpupolynomial time by using
the Matroid Partitioning Algorithmdue to Edmonds [5, 11].

Theorem 4 LetG be a graph with maximum degree
1. IfA>3andMad(G) < &, thenAY(G) = [§] + 1.
2. If Mad(G) < §,thenA!(G) < [5] + 2.
3. If Mad(G) < §, thenA!(G) < [£] + 3.

29(G)
9(G)—2"

Since every planar or projective-planar gragtwith girth ¢(G) verifiesMad(G) < we

obtain the following corollary:

Corollary 2 LetG be a planar or projective-planar graph with maximum degfee
1. If A >3 andg(G) > 16, thenA (G) = [5] + 1.
2. I g(G) > 10,thenA (G) < [5] + 2.
3. If g(G) > 8, thenA!(G) < [£] + 3.

Observe that cycles are linearly 3-choosable; hence, weotaemove the condition oA in
Theorem 4.1 and Corollary 2.1.



Proof of Theorem 4.1 Let G be a counterexample of minimum order, with> 3 andM ad(G) <
1—76. There exists an assignment of lists of size at Ié%ﬂwr 1 such that7 is notlinearlyL-colorable.
Using the method of reducible configurations, we first prdva €& satisfies the following claim:

Claim 1 G does not contain any of the following configurations:

(C1.1) al-vertex,
(C1.2) a 2-vertex adjacent to two 2-vertices,

(C1.3) a 3-vertex adjacent to three 2-vertices, each of thdjacent to a 2-vertex.

Proof.

(C1.1) If G contains a 1-vertex, let ¢ be a linearL-coloring of G\ v (which exists as7\v is a
subgraph of7 and thus verifies\/ad(G\v) < 1%). We now extend: to v : the neighbor
u of v forbids one color; we also have to presewe 3-frugality: among its/ already col-
ored neighborsd < A — 1), there are at worsﬁ%] — 1 pairs of vertices having the same
color. This forbids at mosff%] colors tov. Thusv can be colored with a remaining color
inits list L(v), and the coloring obtained is a line&scoloring of G, which is a contradiction.

(C1.2) If G contains a 2-vertex adjacent to two 2-vertices andw, we color the grapli\v lin-
early with colors belonging to the lists @f (it is possible by the minimality of7). If « and
w have distinct colors, we choose foma color distinct from the colors of its neighbors, and
it is impossible to create a bicolored cycleulndw have the same color, we forbid it t9
as well as the color of the second neighborofThis prevents the creation of any bicolored
cycle. There are at most two forbidden colors, what enatsde aolory since[%] +1>3
whenA > 3.

Figure 6: Elimination of Configuration (C1.3).

(C1.3) If G contains a 3-vertex adjacent to three 2-vertices, eacheshtheing adjacent to an-
other 2-vertex, then we color the reduced grdplobtained fromG by removing the ver-
ticesu, vy, w1, andx; (see Figure 6). This reduced graphis a subgraph o7, and so
Mad(H) < 16/7. We now have to color the vertices v,, wy, andx;. Forv;, we choose
a color different from the color of,. Forw; we take a color different from those af, and
v1. We coloru with a color different from those aof; andw;. For the last vertex, we have
to handle two different cases :«ifandx, have different colors it is impossible to create any
bicolored cycle, so we can take for a color different from those of, andx,. If v and
xo have the same color, we choose fgra color different from those af; andzs (what
prevents bicolored cycles coming fram). As in the previous situation, there are at most
two forbidden colors for each vertex, what enables us toradah of them with a color of
its own list. We then obtain a linedr-coloring of G, which is a contradiction.
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We complete the proof of Theorem 4.1 with a discharging pdace. First, we assign to each
vertexv achargew(v) equal to its degree. We then apply the following dischargirgs:

Rule 1. EachZ4-vertex gives% to each adjacent 2-vertex.

Rule 2. Each 3-vertex give% to each adjacent 2-vertex neighbor of another 2-vertex,$arcdeach
adjacent 2-vertex which is not neighbor of a 2-vertex.

Let w*(v) be the charge of after the procedure. Let be ak-vertex ¢ > 2, asG does not
contain Configuration (C1.1)).

e If k=2v receives% if it is adjacent to aZ4-vertex or to a 3-vertex and a 2-vertex. Else
must be adjacent to two 3-vertices (Configuration (C1.2)sdu& appear in the graph), and
will receive two timest, sow*(v) > 24 2 = 18,

. If*lz Tj; gi\sles a;’g mos€ + 2 + 1 (the graph does not contain Configuration (C1.3)), thus
w \v) =~ -7 = -

2

e If k > 4,then by Rule Lv*(v) > k — k X =.

N
IV

Inany casey™(v) > 2,803 oy (@) w*(v) > 182 SINCEY (o) W™ (V) = X pev @y w(v) =
> vev(c) Av) = 2|E(G)], we have:

. 2E(G)|  2veviyW (V) _16/7[V(G)| 16
Mad®) 2 7a = vl = wel 7

We obtain a contradiction, agad(G) < 42 according to the the definition @¥.

Proof of Theorem 4.2 Let G be a counterexample of minimum order, withad(G) < 2. There
exists an assignmett of lists of size[%} + 2 such that’ is not linearly L-colorable. Using the
method of reducible configurations, we first prove tGagatisfies the following claim:

Claim 2 G does not contain any of the following configurations:

(C2.1) a1l-vertex,
(C2.2) two adjacent 2-vertices,

(C2.3) a 3-vertex adjacent to three 2-vertices.

Proof.

(C2.1) The case of the 1-vertex has already been handle@ iprévious proof (see Configuration
(C1.2)).

(C2.2) IfG contains two adjacent 2-verticesandw, let ¢ be a linearL-coloring of G\ {v, w} (see
Figure 7). We extend to the whole graph by finding colorgv) € L(v) ande(w) € L(w)
for v andw such that the new coloringis a linear coloring of5. Forwv, we choose a color
distinct from those of, andx. We also need to preservés 3-frugality; by doing this we
forbid at most[$] — 1 other colors ta. We take forw a color different from those of and
x; 2's 3-frugality also forbids at mostsS ] — 1 other colors tow. At most[£] + 1 colors
are forbidden t@ andw, so it is possible to color them with colors from their owrtdisWe
obtain a linear_-coloring of G, which is a contradiction.
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Figure 7: Elimination of Configuration (C2.2).

(C2.3) If G contains a 3-vertex adjacent to three 2-verticesg leé a linearl-coloring of the re-
duced graph obtained fromG by removing the vertices, x,, andw; (see Figure 8). In
order to extend: to the whole grapltz, we have to find colors for the remaining vertices:
w1, 21, andu. We choose forw; a color distinct from the colors af, andv;, and from
the at mosﬁ%] — 1 colors appearing twice ims’s neighborhood. We take far a color
different from those of;, wy, andxs. Finally we forbid toz; the colors ofr, andu, as well
as most(%] — 1 colors appearing twice imy's neighborhood. Such a coloring preserves
the property of 3-frugality of all the vertices, and sin€en ) # c¢(v1) ande(u) # ¢(z2) no
bicolored cycle can be created. So we can color each of ttetieas with a color from its
own list in order to obtain a lineak-coloring of ¢, which is a contradiction.

Vo sz
V1

Figure 8: Elimination of Configuration (C2.3).

O

We complete the proof of Theorem 4.2 with a discharging pdace. First, we assign to each
vertexv a chargev(v) equal to its degree. We then apply the following dischargire:

Rule. Each=3-vertex gives}1 to each adjacent 2-vertex.

Letw*(v) be the charge of after the procedure. Letbe ak-vertex ofG (k > 2, asG does not
contain Configuration (C2.1)).

e If k = 2, v is adjacent to twe” 3-vertices (the graph does not contain Configuration (C2.2))
thusw*(v) > 2+ 2 x 1 = 5.

e If £k = 3, v is adjacent to at most two 2-vertices (the graph does notao@onfiguration
(C2.3)), thusv*(v) >3 -2 x 3 = 5.

e If k > 4,v can be adjacent th 2-vertices, saw*(v) > k — k x 1 > 3.

Inany case,”(v) > 5,doncy, cy gy w* (v) > 2. SINCEY, () (1) = Xy w(v) =
Yvev(a) dv) = 2|E(G)], we have:

a 2|E(G)| o Z?)EV(G) w*(v) 5/2|V(G)| _ §
Mad(G) 2 15l = — w2 V@) 2

We obtain a contradiction, @ ad(G) < 5 according to the the definition &f.
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Proof of Theorem 4.3 Let G be a counterexample of minimum order, withad(G) < % There
exists an assigmerit of lists of size[%] + 3 such thatG is not linearly L-colorable. Using the
method of reducible configurations, we first show tGagatisfied the following claim:

Claim 3 G does not contain any of the following configurations:

(C3.1) a1-vertex,
(C3.2) two adjacent 2-vertices,

(C3.3) a 3-vertex adjacent to two 2-vertices.

Proof.
(C3.1) see Configuration (C1.1).
(C3.2) see Configuration (C2.2).

(C3.3) If G contains a 3-vertex adjacent to two 2-vertices,cléte a linearL-coloring of the re-
duced graphH obtained from& by removing the vertices, z;, andw; (see Figure 9. This
coloring exists, ad{ is a subgraph ofy, and thusMad(H) < Mad(G) < §. We ex-
tendc to the whole grapht7, by coloringw,, x1, andu with colors of L(w, ), L(z1), and
L(u) respectively. We take fow; a color different from the colors of andws, and from
the (%] — 1 colors appearing twice iwsy’s neighborhood. We then colar with a color
different from those ofvy, v, x5, and from the(%] — 1 colors appearing twice in's neigh-
bors (3-frugality ofv). Finally, we colorz; with a color different from those of, x5, and
from at most[£] — 1 colors among the colors af’s neighbors. So we can color each ver-
tex with a color from its list, and we obtain a linekfcoloring of G, which is a contradiction.

\ W \

\

X2 Wo X2 W X2 Wo

7 N

Figure 9: Elimination of Configuration (C3.3).

O

We complete the proof of Theorem 4.3 with a discharging pdace. First, we assign to each
vertexv a chargev(v) equal to its degree. We then apply the following dischargire:

Rule. Each=3-vertex gives% to each adjacent 2-vertex.

Letw*(v) be the charge of after the procedure. Letbe ak-vertex ofG (k > 2, asG does not
contain Configuration (C3.1)).

e If £ = 2, vis adjacent to twa”3-vertices (7 does not contain Configuration (C3.2)), thus

w () >242x 1 =23

e If k = 3,vis adjacent to at most one 2-vertex (loes not contain Configuration (C3.3)), thus
w(v) >3-4 =5

e If k > 4, v can be adjacent tb 2-vertices, thuss*(v) > k — k x = >

Wl
wloo
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In any casew* (v) > 5,503, Ly (e " (v) = 3. SINCEY, cyr (& (v) = ey @(v) =
>vev(c) ) =2|E(G)], we have:

. 20E(G)| _ XwevigyW (V) _ 8/3[V(G)| _ 8
Mad(G) > Vi) @] = V(@) 3

We obtain a contradiction, @& ad(G) < % according to the the definition @f.

6 Planar Graphs

The squares? of a graphG is defined byl (G?) = V(G), and two vertices are adjacentd@ if
and only if they are at distance one or twodh We notice that a proper coloring 6 is a linear
coloring of G : all the neighbors of a vertexin G have distinct colors, so the 3-frugality of each
vertex is respected, and there are no bicolored paths ofHethgee (and no bicolored cycle, as a
consequence).

The best known bound for the chromatic number of the squaaeptdnar graph was obtained by
Molloy and Salavatipour (see [10]). They show thaFifs a planar graph, thep(G?) < [%A] +78
([3A] +25if A > 241). The following proposition is a direct consequence of tisult:

Observation 1 LetG be a planar graph with maximum degrée then

[2A] + 78,
MG < { 1SA) 4250 A > 241,

Using a structural lemma from Van den Heuvel and McGuine$$4h we prove the following
result, which improves Observation 1.

Theorem 5 If G is a planar graph with maximum degrée > 12, thenA!(G) < A + 26.

Proof. LetG be a counterexample with minimum order. There exists argassnt/L of lists of
size at leasi\ + 26 such that= is not linearlyL-colorable. In [14], the authors proved the following
lemma:

Lemma 1 (Van den Heuvel, McGuinness 2003) LetG be a planar simple graph. Then there exists
a vertexv with & neighborsvs, ..., v with d(v1) < --- < d(vg) such that one of the following is
true:

i) k<2
(i) k=3 withd(vy) < 11;
(i) k= 4withd(v;) < 7andd(vs) < 11;
(iv) k=5withd(vy) <6, d(ve) <7andd(vs) < 11.

Letk,v,v1,...,v; be asin Lemma 1, and |€’ be the graph obtained frod by contracting
the edgevv; into the vertexv;. This graph has maximum degree 12 (case (ii)Agiso by the min-
imality of G there exists a linear coloringof G’ such that any vertex € V(G’) is colored with a
colore(u) € L(u). In order to extend to G, we only need to colos with a color from its listL(v).
Choose the color of different from the colors of, . . . , v, as well as the colors of the neighbors of
vy, ..., Vk—2 if kK > 3. Choose it also different from the colors appearing twiceagithe vertices
adjacent tay,_1 orv. In total we forbid at moss + 5 + 6 + 10 + (2A — 2)/2 = A + 25 colors to
v. Since|L(v)| > A + 26, it is possible to find an appropriate color for this vertex.

12



We now prove that the coloring obtained is linear. Since tlering ¢ of G’ is linear, no color
appears more than twice in the neighborhood @i GG. If £ > 3, the colors of the neighbors of
vy, ..., V_o are forbidden ta, so the 3-frugality ofv, ..., v;_o is preserved and any bicolored
cycle passing through containsv,_; andvg. The colors appearing twice itV (v;_1) or twice
in N(vy) are forbidden, so the 3-frugality af,_, andvy, is preserved. The colors appearing in
N(vi—1) and N (vy) are also forbidden, so cannot belong to any bicolored cycle. We thus obtain
a linearL-coloring of G, which is a contradiction. =]

7 NP-completeness

Theorem 6 Deciding whether a bipartite subcubic planar graph is linge3-colorable is an NP-
complete problem.

Proof. The proof of the NP-completeness proceeds by a reductitimetgroblem of 3-coloring
of planar graphs, that is an NP-complete problem [7]. Giveinatance of this problem —a planar
graphH, we need to create a bipartite subcubic planar gr@ii a size polynomial inV (H)| such
thatG is linearly 3-colorable if and only iff is 3-colorable.

Let M be the7 x 2 grid (see Figure 10). Observe that in any linear 3-coloring M, we have
c(z1) = c(x2) ande(yr) = c(y2).

6\ b c a b c /zD
1 3
y1 @ c a b c a @yz

Figure 10: A linear 3-coloring of the grap.

X1

Let A'(z1, 22) be the graph depicted in Figure 11. This graph is bipartitecabic, planar, and
linearly 3-colorable. Moreover, by the property.bf we have:(z1) = ¢(z2) in any linear 3-coloring
cof V.

Figure 11: The graptV(z1, z2). The two stable sets are represented with white and black dot
respectively.

To make the reduction, we first replace eathertexu € V(H) by a treeT;, with maximum
degree at most 3, havingleaves (each leaf, corresponds to a link to a neighborof v in H).
We then replace each edge of these trees by the grapti(z, y). We then link each vertex, to
the vertexv, by an edge (see Figure 12). Each tree is bipartite, but oustoaction may not be

13



bipartite at this point : if we color each trdg, properly with the colorblackandwhite, two leaves
v, andw, may be colored with the same color. If this is the case, we isidalthe edgev,,w,,
thus creating a new vertex,,,, adjacent tov,, andw,. We then replace the edggm,,, by the
graph\V (v, , m. ). We repeat this process until the graph obtained is prof2ediylorable, and thus
bipartite.

Figure 12: Transformation of the planar graph into a subcbipartite planar graph.

The graphG obtained is planar, bipartite, and subcubic. Each verteak®tre€l’, receives the
color of u in the 3-coloring ofH . This 3-coloring of the graply is linear : there is no problem of
3-frugality in the trees, and there are no bicolored cydier@ are no bicolored paths of size at least
four in the widgets).

Conversely, in a linear 3-coloring @1, the vertices of a given trég, have the same color, which
can be used to colarin H. So we easily obtain a 3-coloring éf. |

We could have used 4 x 2 grid instead of & x 2 grid to build the widget. All the properties
would have been conserved, but the widget would not have bigantite (it would have contained
someC5). The theorem of NP-completeness would have been a littekere

8 Conclusion

An interesting problem would be to find families of planarga whose linear chromatic number
would beaA + b, with % < a <1 (if such a family exists): we do not know if the bound of Theaare
5 is tight for a certain class of graph. It is also an open problo know whetheA!(G) = A(G) for
every graphG.

A generalization of linear coloring can be made, by replgdhre condition of 3-frugality by a
condition ofk-frugality. More precisely, we define theforested coloringdf a graphG as a proper
coloring of the vertices o&F such that the union of any two color classes is a forest of mami
degree at most— 1. Thek-forested numbenf a graphz, denoted byA, (G), is the smallest number
of colors appearing in &-forested coloring of5.

The lower bound of Proposition 1 can be easily generalizey,(@7) > [%1 + 1 for all graph
G of maximum degree\. The example described by Yuster in [16] can also be gerzedin k

dimensions in order to prove thaf, (G) = Q(A%). However, this construction is less interesting
than the construction of Alon, McDiarmid and Reed [1] for #ogclic chromatic number as soon as
k> 5.
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