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On irle graphs with girth at least �veLouis Esperet ∗ and Pasal Ohem ∗

∗ LaBRI, Université Bordeaux 1, Talene, FraneMay 2007AbstratCirle graphs with girth at least �ve are known to be 2-degenerate(Ageev, 1999). In this paper, we prove that irle graphs with girth atleast g ≥ 5 ontain a vertex of degree at most one or a hain of g − 4verties of degree two, whih implies Ageev's result in the ase g = 5.We then use this strutural property to give an upper bound on theirular hromati number of irle graphs with girth at least g ≥ 5 aswell as a preise estimate of their maximum average degree.1 IntrodutionLet C denote the unit irle, and let us take the lokwise orientation as thepositive orientation of C. Let {x0, . . . , xk−1} ⊂ C, we say that (x0, . . . , xk−1)are in yli order if the minimum between the sum of the length of thears −−−−→xixi+1, 0 ≤ i ≤ k − 1, and the sum of the length of the ars −−−−→xi+1xi,
0 ≤ i ≤ k − 1, is equal to one, where i is taken modulo k. A pair {x, y} ofelements of C is alled a hord of C with endpoints x and y. Two hords
{x1, y1} and {x2, y2} interset if (x1x2y1y2) are in yli order, otherwisethey are said to be parallel.All graphs onsidered in this paper are simple: they do not have anyloop nor parallel edges. The girth of a graph G is the size of a shortest ylein G. We all a k-vertex (resp. ≤k-vertex, ≥k-vertex) a vertex of degree k(resp. at most k, at least k).By de�nition, every irle graph G with set of verties V (G) = {v1, . . . , vn}admits a representation C = {{x1, y1}, . . . , {xn, yn}} suh that for all i, j,
vi and vj are adjaent in G if and only if the hords {xi, yi} and {xj , yj}1



(b)(a)Figure 1: (a) The unique irle representation of C4. (b) The two non-equivalent representations of C4 on the real axis.interset in C. We only onsider representations in whih endpoints and in-tersetion points of hords are all distint. Observe that in general, irlegraphs do not have a unique representation. A representation C′ obtainedfrom C only by removing hords is alled a sub-representation of C. Observethat if C is a representation of G, a sub-representation of C orresponds toan indued subgraph of G.Observation 1 Let G be a irle graph with representation C, and let v1, . . . , vkbe an independent set in G. The hords of C orresponding to v1, . . . , vk arepairwise parallel.In order to prove that irle graphs with girth at least �ve are 2-degenerate,Ageev [1℄ does not onsider their irle representation, but an equivalentrepresentation on the real axis, usually alled interval-overlap. The majordi�erene is that some graphs, for example yles, have a unique irle rep-resentation whereas they have several non-equivalent representations on thereal axis (see Figure 1). Hene, even if onsidering a real axis representationan be very onvenient to de�ne an order on the endpoint of the hords, thease study is then muh harder. Unfortunately, even in the irle representa-tion, some very simple graphs suh as the union of two disjoint paths do nothave a unique representation (see Figure 2). Observe that in Figure 2(a), therepresentation of the two paths is a sub-representation of the representationof a yle. In this ase we make a slight abuse of notation and say that thetwo paths are in yli order.In Setion 2, we prove the following extension of Ageev's result:Theorem 1 Every irle graph with girth g ≥ 5 ontains a ≤1-vertex or ahain of (g − 4) 2-verties. 2



(a) (c)(b)Figure 2: Three non-equivalent irle representations of the union of twopaths of length two.In [1℄, Ageev uses his strutural result to prove that irle graphs withgirth at least �ve have hromati number at most three. We an use The-orem 1 to obtain a re�nement of this result for irle graphs with largergirth. Instead of onsidering the hromati number of these graphs, weonsider their irular hromati number. For two integers 1 ≤ q ≤ p, a
(p, q)-oloring of a graph G is a oloring c of the verties of G with olors
{0, . . . , p − 1} suh that for any pair of adjaent verties x and y, we have
q ≤ |c(x) − c(y)| ≤ p − q. The irular hromati number of G is

χc(G) = inf(p

q
| there exists a (p, q)-oloring of G

)

.It is known that χ(G) − 1 < χc(G) ≤ χ(G), and so χ(G) = ⌈χc(G)⌉. Thehromati number an thus be onsidered as an approximation of the iru-lar hromati number.Using a well-known observation on irular oloring (see e.g. Corollary2.2 in [2℄), the existene of a hain of (g − 4) 2-verties implies the followingresult:Corollary 1 Every irle graph G with girth g ≥ 5 has irular hromatinumber
χc(G) ≤ 2 +

1
⌊

g−3
2

⌋ .In Setion 3, we study an invariant giving a very preise idea of the loalstruture of graphs. The maximum average degree of a graph G is de�ned asmad(G) = max {ad(H),H ⊆ G} , where ad(H) =
2|E(H)|

|V (H)|
.3



Class Planar Outerplanar Partial 2-Tree Seg 1-String
µg 2 + 4

g−2 2 + 2
g−2 2 + 2

⌊ g−1

2
⌋

2 + 4
g−4 2 + 4

g−4Table 1: Values of µg for some lasses of graphs.For planar graphs, there is a simple relation between girth and maximumaverage degree: any planar graph G with girth g is suh that mad(G) <
2g/(g−2). On the other hand, there exists a family (Gn)n≥0 of planar graphswith girth g, suh that mad(Gn) → 2g/(g − 2) when n → ∞. We wouldlike to obtain the same kind of link between the girth and the maximumaverage degree of irle graphs. The following orollary is a straightforwardonsequene of Theorem 1:Corollary 2 Any irle graph G with girth g ≥ 5 is suh that mad(G) <
2 + 2/(g − 4).note that Corollary 2 has some impliations on the irular hoosabilityof irle graphs. Using Proposition 32(i) in Setion 5.4 of [3℄, we an prove :Corollary 3 Every irle graph G with girth g ≥ 5 has irular hoie num-ber h(G) ≤ 2 + 4

g−2 .To improve Corollary 2, we onsider
µg(F) = sup {mad(G) | G ∈ F and G has girth at least g} .Let Seg denote the lass of graphs de�ned as intersetion of segments in theplane, and 1-String denote the lass of graphs de�ned as intersetion ofjordan urves in the plane, suh that any two urves interset at most one.Table 1 gives an idea of the funtion µg for some lasses of graphs. Notethat for Seg and 1-String, g has to be at least �ve, sine otherwise µg isnot bounded.We an remark that for all these lasses, µg is a rational number. Thefollowing theorem shows that this is not the ase for the lass of irle graphs.It is proved in Setion 3.Theorem 2 For every g ≥ 5, µg(Cirle) = 2

√

g−2
g−44



2 Proof of Theorem 1Let G = (V,E) be a irle graph with girth g ≥ 5 and minimum degree two,and let C = {{x1, x
′
1}, . . . , {xn, x′

n}} be a irle representation of G. We �rstdeompose the hords of C into two sets, using the following rules:(1) for every set of 3 distints hords {x, x′}, {y, y′}, and {z, z′}, suh that
{y, y′} is unolored and (xyzz′y′x′) are in yli order, olour the hord
{y, y′} in blue,(2) olour all the unolored hords in red.By onstrution, the red hords are exatly the hords {x, y} suh thatat least one of the ars −→xy and −→yx does not ontain both endpoints of a horddistint from {x, y}. Let CR (resp. CB) be the representation indued by thered (resp. blue) hords and GR (resp. GB) be the orresponding graph. We�rst prove the following lemma.Lemma 1 CR is a sub-representation of the representation of a yle.Proof. Assume that GR ontains a ≥3-vertex v, adjaent to x, y, and

z in GR. Sine g ≥ 5, the graph G does not ontain any triangle, andso {x, y, z} is an independent set. Using Observation 1, this implies thatthe three orresponding red hords are parallel in any representation, whihontradits Rule (1).Hene, GR has maximum degree two. Suppose now that GR ontains ayle. Then if there exists a vertex whih is not in the yle, the orrespond-ing hord, as well the hords orresponding to two non-adjaent verties ofthe yle, are parallel (reall that the yle has length at least �ve, sine
g ≥ 5). This ontradits Rule (1). So GR is either a yle or a union ofdisjoint paths.Suppose now that CR is not a sub-representation of a yle. Then GR isneessarily a union of disjoint paths, and two of them are not in yli orderin CR. This also ontradits Rule (1), so CR is a sub-representation of therepresentation of a yle. 2Observe that eah blue hord {x, y} indues two omplementary ars −→xyand −→yx on the irle. We denote by A1 the set of suh ars. Similarly, twointerseting blue hords {u, v} and {x, y} indue four onseutive ars whoselengths add up to one, say without loss of generality −→ux, −→xv, −→vy, and −→yu. Wedenote by A2 the set of all suh ars.5



For any ar −→xy of the irle, we de�ne ρ(−→xy) as the number of red hordshaving both endpoints in −→xy. We onsider the integer t = min{ρ(−→xy),−→xy ∈
A1 ∪A2, ρ(−→xy) > 0}.If there is no blue hord in our deomposition, then G is either a yle ora union of paths, and thus ontains a ≤1-vertex or g adjaent 2-verties. Sowe an assume from now on that GB is non empty. Observe that for any bluehord {x, y}, we have ρ(−→xy) > 0 and ρ(−→yx) > 0 sine otherwise {x, y} wouldbe red. Hene, the integer t exists. We now onsider two ases, dependingon whether the minimum is reahed by two interseting hords or by a singlehord.Case 1: The minimum t > 0 is reahed by two interseting blue hords,say {x, x′} and {y, y′}, and for every blue hord {u, v}, we have ρ(−→uv) 6= t.Let us assume without loss of generality that t = ρ(−→xy). Aording to thelokwise order, we denote by {x1, x

′
1}, . . . {xt, x

′
t} the red hords having bothendpoints in −→xy (see Figure 3(a)). Observe that every blue hord has at mostone endpoint in −→xy, sine otherwise we would have a blue hord {u, v} with

1 ≤ ρ(−→uv) ≤ t, whih would ontradit the hypothesis.We �rst prove that the graph indued by the hords {xi, x
′
i} (1 ≤ i ≤

t) is a path. If this is not the ase, then for some i the hords {xi, x
′
i}and {xi+1, x

′
i+1} do not interset. Then either one of them orresponds toa ≤1-vertex, or eah of them intersets a blue hord. Suh a blue hordalso intersets {x, x′} or {y, y′}, sine it has only one endpoint in −→xy. Thisontradits the minimality of t.We now prove that the ar −−−−→

x2x
′
t−1 does not ontain any endpoint of ablue hord. Observe that if the ar ontains the endpoint u of a blue hord,then there exists 1 ≤ i ≤ t − 2 suh that u ∈

−−−−→
x′

ixi+2, sine otherwise thiswould reate a triangle. If suh an endpoint u exists, the related blue hordalong with {x, x′} or {y, y′} ontradits the minimality of t.Hene, the verties orresponding to {xi, x
′
i} (2 ≤ i ≤ t − 1) are a hainof (t − 2) 2-verties in G. Sine G does not ontain any 1-vertex, the hord

{x1, x
′
1} intersets a hord {u, u′} distint from {x2, x

′
2}. Suh a hord maybe blue or red, but by the minimality of t it annot interset {y, y′}. Sothe hord {u, u′} has to interset {x, x′} and sine g ≥ 4, exatly one suh

{u, u′} exists. Similarly, {xt, x
′
t} intersets exatly one hord distint from

{xt−1, x
′
t−1}, say {v, v′}, and {v, v′} also intersets {y, y′}. Thus the vertiesorresponding to {xi, x

′
i} (1 ≤ i ≤ t) form a hain of t 2-verties in G. Sinethe hords {x, x′}, {u, u′}, {x1, x

′
1}, . . . , {xt, x

′
t}, {v, v′}, {y, y′} orrespond to6



x′t−1

x y

v
x′t

x2
x′1

u
x1 (a) x′t−1x2

x′1

x1

u

x y

v
x′t(b)Figure 3: A hain of t ≥ g − 4 verties of degree two in G.

2(g−4) half-chords2(g−3) half-chords

F F

Figure 4: From Qg,t to Qg,t+1a yle in G, we have t ≥ g − 4.Case 2: The minimum t > 0 is reahed by a blue hord {x, y}. The proofis the same as the previous one, exept that we obtain a hain of (g − 3)2-verties instead of (g − 4) 2-verties (see Figure 3(b)).3 Proof of Theorem 2Let us �rst give a onstrution to prove the lower bound. For every g ≥ 5, weonstrut a family (Qg,t)t≥0 of irle graphs with girth g suh that Qg,0 = Cg(the yle on n verties) and Qg,t+1 is obtained by adding hords to therepresentation of Qg,t.These new hords (represented as thin hords in Figure 4) indue a yle.Every old hord (i.e. that belongs to Qg,t, represented as thik hords inFigure 4) intersets one new hord at eah of its endpoints. A k-region isa region inside the irle, whih is inident to the irle and to exatly khords. Note that in any Qg,t, every k-region is either a 2- or a 3-region.Any 2-region in Qg,t produes in Qg,t+1 a fae F of size g, (g − 3) verties(2(g − 3) half-hords), (g − 2) edges, (g− 3) 2-regions, and (g− 2) 3-regions.Any 3-region in Qg,t produes in Qg,t+1 a fae F of size g, (g − 4) verties,7



Q5,0 Q5,1Figure 5: Examples
(g − 3) edges, (g − 4) 2-regions, and (g − 3) 3-regions.We now onsider the vetor Vg,t = t (n,m,R2, R3) whose omponents arerespetively the number of verties, edges, 2-regions, and 3-regions of Qg,t.By onstrution, we have that Vg,t+1 = MgVg,t, where

Mg =









1 0 g − 3 g − 4
0 1 g − 2 g − 3
0 0 g − 3 g − 4
0 0 g − 2 g − 3







The limit of the average degree ad(Qg,t) of Qg,t when t → ∞ an be obtainedfrom the unique eigenvetor
V =









g − 3 +
√

(g − 2)(g − 4)

g − 2 + (g − 3)
√

(g − 2)/(g − 4)

g − 4 +
√

(g − 2)(g − 4)

g − 2 +
√

(g − 2)(g − 4)







assoiated to the largest eigenvalue g− 3 +
√

(g − 2)(g − 4) of Mg. We thusobtain:
µg ≥ lim

t→∞
ad(Qg,t) = 2 ·

g − 2 + (g − 3)
√

(g − 2)/(g − 4)

g − 3 +
√

(g − 2)(g − 4)
= 2

√

g − 2

g − 4Before proving the upper bound, we make some remarks on strutureof the graphs Qg,t. Observe that the graphs Qg,t with t ≥ 1 are irlegraphs with girth g ≥ 5 that ontain neither ≤1-verties nor hains of (g−3)2-verties (see Figure 5 for an example with g = 5), whih proves that The-orem 1 is optimal in a ertain way. Another interesting property of thesegraphs is that for any g ≥ 5, Qg,t ontains Kt+3, the omplete graph with
t + 3 verties, as a minor (that is, Kt+3 an be obtained from Qg,t by on-trating edges and removing edges and verties). To see this, ontrat Qg,08



in order to obtain a triangle, and at eah step ontrat the set of new vertiesinto a single vertex, whih is universal by onstrution. The size of the liquewe onstrut will inrease by one at eah step, and we will eventually obtain
Kt+3 as a minor of Qg,t. This implies that for any integer g ≥ 5 and anygraph H, there exists a irle graph G with girth g suh that G ontains Has a minor.We now prove the upper bound by ontradition. Sine irle graphs ofgirth at least g are losed under taking indued subgraphs, it is su�ient toprove that every irle graph G with girth at least g ≥ 5 has average degreead(G) < 2

√

g−2
g−4 .Let G be a irle graph and C be a irle representation of G. We denoteby R(C) the planar graph onstruted as follows:

• the vertex set of R(C) is the set of rossings of hords in C,
• two distint verties are adjaent in R(C) if and only if they orrespondto onseutive rossings of a same hord in C.Observe that the onstrution above learly gives a natural planar embeddingof R(C). In the following, we only onsider this preise planar embedding.For example, the outerfae of R(C) will be well-de�ned. Note that R(C) hasmaximum degree four.Let us onsider a �xed integer g ≥ 5 and a irle graph G1 with girth atleast g, suh that ad(G1) > 2

√

g−2
g−4 , and suh that G1 is minimal with thisproperty. That is, for any irle graph H with girth at least g and suh that

|V (H)| < |V (G1)|, we have ad(H) < 2
√

g−2
g−4 . Observe that by minimality,

G1 does not ontain any ≤1-vertex, sine otherwise by removing it we wouldobtain a smaller graph with larger average degree.Let C1 be a representation of G1. If the outerfae of the planar embeddingof R(C1) ontains a 4-vertex, we apply the following operation on C1, whihgives a new representation C2 and a new irle graph G2 with girth g. Let
u denote a 4-vertex on the outerfae of R(C1). It orresponds to an edgebetween to verties v1 and v2 of G1, represented by two rossing hords c1and c2 in C1. Sine u is a 4-vertex in R(C1), the hords c1 and c2 respetivelyross two hords c′1 and c′2 as depited in Figure 6. Let v′1 and v′2 be theverties of G1 assoiated to c′1 and c′2. Sine u is on the outerfae of R(C1),
v′1 and v′2 are not adjaent in G1. Hene, we an add a path of g − 4hords between c′1 and c′2, as depited in Figure 6. Let C2 denote the newrepresentation, and G2 be the assoiated irle graph. The g − 4 verties9
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Figure 6: From C1 to C2added to G1 to obtain G2 form a yle of length exatly g in G2 ontaining
v1, v2, v′1, and v′2. Note that the number of 4-verties on the outerfae of theplane graph assoiated to the representation dereases by one after at mosttwo iterations of this proess.Let n1 and m1 denote respetively the number of verties and edges of
G1. By Corollary 2, we have that ad(G1) < 2 · g−3

g−4 . This implies thatad(G2) = 2 · m1+g−3
n1+g−4 > 2 · m1

n1
= ad(G1). Thus the average degree inreasesduring this operation.We repeat this operation until we obtain a irle graph G with girth ghaving a representation C suh that the outerfae of the planar embeddingof R(C) does not ontain any 4-vertex. The onsequene of the previousobservation is that ad(G) > ad(G1) > 2

√

g−2
g−4 . Let n and m be the numberof verties and edges of G. This implies in partiular that:

√

g − 2

g − 4
n < m (1)Let N , M , and F denote respetively the number of verties, edges, andfaes of R(C). Sine a rossing in C orresponds to both an edge in G and avertex in R(C), we have:

N = m (2)We an write Euler's formula for the planar embedding of R(C) as follows:
M + 2 = F + N (3)Let Nd denote the number of d-verties in R(C). Sine G1 does notontain any ≤1-vertex, and no new ≤1-vertex is reated during the trans-formation, the graph G does not ontain any ≤1-vertex either. This implies10



in partiular that R(C) does not ontain ≤1-verties. Thus, the degree of avertex in R(C) is at least 2 and at most 4 and we have:
N = N2 + N3 + N4 (4)The sum of vertex degrees is equal to twie the number of edges in R(C):

2N2 + 3N3 + 4N4 = 2M (5)Any hord in a representation of G orresponding to some vertex v ∈ Gontains (deg(v) − 1) edges of R(C). Sine ∑

v∈G(deg(v) − 1) = 2m − n, wehave:
2m − n = M (6)Note that the outerfae of R(C) ontains every 2-vertex, every 3-vertex,and no 4-vertex of R(C). Moreover, R(C) annot ontain a fae of degreestritly less than g, sine otherwise G would ontain a yle of length stritlyless than g. We thus obtain a lower bound on the sum of degrees of the faesof R(C), whih is equal to twie the number of edges in R(C):

g(F − 1) + N2 + N3 ≤ 2M (7)Let us deompose the hords of C into blue and red hords as done in theproof of Theorem 1. Using previous notation, CB is the sub-representationof C indued by the blue hords and GB is the orresponding irle graph.Note that GB is a proper indued subgraph of G1 and G. We thus have:ad (

GB
)

=
2(m − N2 − N3)

n − N2
< 2

√

g − 2

g − 4
<

2m

n
= ad (G)This implies that 2(N2+N3)

N2
> 2m

n
> 2

√

g−2
g−4 , whih gives:

(
√

g − 2

g − 4
− 1

)

N2 < N3 (8)The ombination (g − 4)× (1)+ (g − 4)
(

2
√

g−2
g−4 − 1

)

× (2)+ g × (3)+

2(g−2)
(

1 −
√

g−4
g−2

)

×(4)+ 1
2(g−2)

(

1 −
√

g−4
g−2

)

×(5)+√

(g − 2)(g − 4)×(6) + (7) + 1
2(g − 4)

(√

g−2
g−4 − 1

)

× (8) gives g < 0, a ontradition.11



4 PerspetivesIn the present paper, we study the struture of sparse irle graphs. Theopposite problem of studying the struture of dense irle graphs seems to bemuh harder. For example, the relation between the lique number of irlegraphs and their hromati number is not preisely established. Kostohkaand Kratohvíl [4℄ proved that every irle graph with lique number ω hashromati number at most 2ω+6, but this is still far from the lower bound of
Ω(ω logω).Note that the upper bound of 2ω+6 even holds for polygon-irle graphs,a superlass of irle graphs, de�ned as the intersetion lass of hords andonvex polygons of the irle. The size of this lass is known to be muhlarger, but we suspet that polygon-irle graphs with girth at least �vebehave like irle graphs with girth at least �ve. It would be interesting tosee if the results of the present paper extend to the lass of polygon-irlegraphs.AknowledgementThe authors would like to thank Daniel Gonçalves and Arnaud Labourel forfruitful disussion.Referenes[1℄ A.A. Ageev. Every irle graph with girth at least 5 is 3-olourable,Disrete Math., 195 (1999) 229�233.[2℄ A. Galluio, L.A. Goddyn, and P. Hell. High-Girth Graphs Avoidinga Minor are Nearly Bipartite J. Combin. Theory. Ser. B 83(1) (2001),1�14.RR-5957[3℄ F. Havet, R.J. Kang, T. Müller, and J.-S. Sereni. Cirular hoosability,INRIA Sophia-Antipolis Tehnial Report RR-5957 (2006).[4℄ A. Kostohka, J. Kratohvíl. Covering and oloring polygon-irlegraphs, Disrete Math., 163 (1997) 299�305.
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