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Property Testing:a (very informal) motivation 
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Graph Property Testing 
 

Objective [Goldreich, Goldwasser, Ron (96)]:  

distinguish between graphs on n vertices that 

satisfy a property P, and ones that are ε-far 

from satisfying it, by inspecting the induced 

subgraph on a random sample of only f(ε) 

vertices. 

 

Here ε-far means that one has to delete or add 

to the graph at least εn2 edges to get a graph 

satisfying the property. 

 

A graph property is called testable if a random 

sample of f(ε) vertices suffices. 
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We consider 1-sided testers, that is, if the graph 

satisfies P, we will surely say so by inspecting 

its sample, if it is ε-far from satisfying P, the  

sample will reveal, with probability at least 0.9, 

that it does not satisfy P. 

 

Intuitively, a (global) property is testable iff it  

can be inferred from local information. 
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Which graph properties are testable ? 
 

A property is hereditary if it is closed under taking 

induced subgraphs. 

 

Examples: 3-colorable, H-free, Perfect, Planar, 

Comparability, Chordal, Interval, Intersection graph 

of boxes in R17 , having a 2-edge coloring with no 

monochromatic triangle, … 

 

Not hereditary: disjoint union of two isomorphic 

graphs, decomposable into edge-disjoint  

triangles, decomposable into Hamilton cycles,… 
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Thm (A-Shapira 05):  

Any hereditary property is testable. The converse 

is also (essentially) true: 

A graph property is testable (by an oblivious tester) 

iff it is (semi-) hereditary 

 

Intuition: a sample leads to the conclusion that 

G does not satisfy P iff it is forbidden as an induced 

subgraph 

 

The proof is based on a strong version of  

Szemerédi’s Regularity Lemma [A, Fischer,  

Krivelevich, M. Szegedy (00)]. 

Lovász, B. Szegedy(06): a subsequent alternative 

proof based on convergent graph sequences 
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Remark 1: testability implies the local nature of 

hereditary graph properties: if G is ε-far from 

satisfying a hereditary property P, then G contains 

a small witness (for not satisfying P): an induced 

subgraph on at most f(ε) vertices that does not 

satisfy P.   

 

(For P=k-colorability this was proved  by Bollobás, 

Erdős, Simonovits and Szemerédi (78) for k=2 and 

by Duke and Rödl (85) for every k) 

 

Remark 2: The upper bounds obtained for f(ε) are 

huge even for seemingly simple properties, like 

being perfect [Tower of height 1/εO(1)  or worse] 
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Easily Testable Properties  
 

 

Def: a graph property is called easily testable 

if it is testable with samples of size  

                   f(ε) ≤ (1/ε)O(1)  = Poly(1/ε) 

 

 

Question: what are the easily testable graph 

properties ? 
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Previous results:  
 

Being k-colorable is easily testable  

[ implicit in Duke-Rödl (85),  

A-Duke-Lefmann-Rödl-Yuster (92),  

explicit in Goldreich-Goldwasser-Ron(96), 

improved bounds in A-Krivelevich (02),  

Sohler (12) ] 

 

Goldreich-Trevisan(03): Similar more general 

“partition problems” are easily testable. 
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Thm (A-00): For a fixed graph H, the property PH   

of being H-free is easily testable if and only if H is  

bipartite. 

H1 : not easy                    H2 : easy 
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Thm [A-Shapira (06)]: The property P*
H of being 

induced H-free is easily testable for  

 
H=P1 = , for H=P2= 

and for their complements, maybe it is easily 

testable for  H=P3 , H=C4 and their complements, 

and it is not easily testable for any other H.  
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Thm 1 [A-Fox(14)]: The property of being induced 

H-free for H=P3 is easily testable 

 

Note: this is the property of being a cograph, a  

theorem of Seinsche(74) gives the structure of 

these graphs: these are all graphs generated from 

the single vertex by complementation and disjoint 

union.  

 

Example: 
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What about perfectness ? 

 

The Strong Perfect Graph Thm [ Chudnovsky,  

Robertson, Seymour, Thomas (06)]: A graph 

is perfect iff it contains no induced odd cycle 

on at least 5 vertices (odd hole) or the complement 

of one (odd antihole).  

 

This is proved by establishing a strong structural  

theorem for these graphs 
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Thm 2 [A-Fox(14)]: The property of being perfect 

is not easily testable. 

 

Similarly: the property of being a comparability 

graph is not easily testable. 
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Something about the proofs 

Prop 1: being induced P2 –free is easily testable. 

 

Proof (sketch): a graph is induced P2 –free iff it is  

a vertex disjoint union of cliques. 

 

Suppose G=(V,E) on n vertices is ε-far from being 

such a union. We show that an induced subgraph 

on a random set  of O(1/ε log (1/ε)) vertices is not  

likely to be such a union.  

 

Choose this set in two steps, starting with a random 

set X and adding a random set Y. 
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May assume that each degree is at least εn/10 

and that the induced subgraph on X is a  

disjoint union of cliques. 

 

With high probability (whp) all vertices 

but εn/10   have neighbors in X  
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If there are at least εn/10 vertices having 

neighbors in two cliques of X, or having 

neighbors in some clique of X but without 

being connected to all of it, we’ll find such 

vertex in Y, whp. 
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If there are at least εn2/10 pairs of adjacent  

vertices u,v, with u having neighbors in one 

clique and v in the other, we’ll find such a pair 

in Y, whp. 

u 

v 
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Similarly, if there are at least εn2/10 pairs of  

non-adjacent vertices u,v, both having neighbors 

in the same clique, we’ll find such a pair in Y, whp. 

u 

v 
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If none of these happens, then G is not ε-far 

from being a union of disjoint cliques, as we can 

classify most of the vertices according to the 

unique clique in X to which they are connected 

and turn G into a disjoint union of cliques on 

the resulting classes by adding and deleting  

less than εn2 edges. 

 

This contradicts the assumption that G is ε-far 

from being a union of disjoint cliques.  

 

Therefore, being induced P2–free is  

easily testable. 
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Note that the existence of a simple structural 

description of induced P2-free graphs (as a 

disjoint union of cliques) is helpful in the proof. 

 

A similar (though more complicated) proof works  

for showing that being induced P3 –free is easily  

testable. Here, too, the structural description of 

such graphs as cographs is crucial. 

 

The proof here gives that a sample of size 

                                2 (100/ ε)16   

suffices. 
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Thm: being perfect is not easily testable 

 

Proof (sketch): 

 

Taking a blow-up of the graph of 

Ruzsa and Szemerédi (76), based on the 

construction of Behrend (46) of dense subsets 

of Zn with no 3-term arithmetic progressions 

we get the existence of a 3-partite graph F with 

n/3 vertices in each vertex class, which is  ε-far 

from being triangle-free, but contains only 

                           εΘ(log(1/ε)) n3  

triangles. 
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Let V2,V3,V5 be the vertex classes of F, each of 

size n/3, add vertex classes V1,V4 each of size 2n 

and construct a graph as follows. 

V5 

V2 

V1 

V4 

V3 
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Each Vi is independent,  

V1V4,V2V4,V1V5 complete bipartite,  

V4V5,V3V4,V1V3,V1V2 no edges 

V5 

V2 

V1 

V4 

V3 
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V3V5, V2V3 as in F 

V2V5 as in the bipartite complement of F 

V5 

V2 

V1 

V4 

V3 
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V5 

V2 

V1 

V4 

V3 

Each triangle in F with a vertex in V1 and a vertex 

in V4 give an induced C5 . Thus G is Θ(ε)-far from 

induced C5 free (and hence also from being perfect) 
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Def: A comparability graph is a graph whose vertices 

are the elements of a partially ordered set with two  

adjacent iff comparable. 

 

It is well known that each such graph is perfect. 

 

A graph is a comparability graph iff it has an acyclic 

orientation satisfying transitivity. 
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V5 

V2 

V1 

V4 

V3 

Orienting all edges of our graph from bottom to top, 

the only violations of transitivity arise from triangles 

in F. Thus our sample will be a comparability graph 

unless it contains the vertices of such a triangle. 
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But the number of triangles is only  

                                  εΘ(log(1/ε)) n3   

and hence the probability to include one by a 

random set of poly(1/ε) vertices is tiny. 

 

Hence perfectness is not easily testable, and so 

is the property of being a comparability graph. 
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Open Problems 
Which (hereditary) graph properties are easily 

testable ?   

 

Which properties admit witnesses of size  

poly(1/ε) ? 

 

In particular, suppose that G=(V,E) is ε-far from 

being perfect. Must G contain an odd hole or 

antihole of size at most poly(1/ε) ?  


