Flows in graphs and matroids ICGT Grenoble, 2014

Bertrand Guenin, University of Waterloo

July, 2014

Flows in graphs and matroids ICGT Grenoble, 2014

Defining flows

A flow instance:

- Graph G = (V, E)
- Demand edges: $\Sigma \subseteq E(G)$
- Capacity edges: $E(G) \setminus \Sigma$
- Integer weights $w_e \ge 0$ for all $e \in E$

Defining flows

A flow instance:

- Graph G = (V, E)
- Demand edges: $\Sigma \subseteq E(G)$
- Capacity edges: $E(G) \setminus \Sigma$
- Integer weights $w_e \ge 0$ for all $e \in E$

Let $\mathscr C$ be the set of circuits containing exactly <u>one</u> demand edge.

 $y_C \geq 0$ for all $C \in \mathscr{C}$ is a flow if

 $y_C \ge 0$ for all $C \in \mathscr{C}$ is a flow if

Capacity constraints: for every capacity edge e,

$$\sum \left(y_C : e \in C \in \mathscr{C}\right) \le w_e$$

Let ${\mathscr C}$ be the set of circuits containing exactly <u>one</u> demand edge.

 $y_C \geq 0$ for all $C \in \mathscr{C}$ is a flow if

Capacity constraints: for every capacity edge e,

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \le w_e$$

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) = w_e$$

Let ${\mathscr C}$ be the set of circuits containing exactly <u>one</u> demand edge.

 $y_C \ge 0$ for all $C \in \mathscr{C}$ is a flow if

Capacity constraints: for every capacity edge e,

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \le w_e$$

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) = w_e$$

 $y_C \ge 0$ for all $C \in \mathscr{C}$ is a flow if

Capacity constraints: for every capacity edge e,

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \le w_e$$

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \, = \, w_e$$

 $y_C \ge 0$ for all $C \in \mathscr{C}$ is a flow if

Capacity constraints: for every capacity edge e,

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \le w_\epsilon$$

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \, = \, w_e$$

 $y_C \ge 0$ for all $C \in \mathscr{C}$ is a flow if

Capacity constraints: for every capacity edge e,

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \le w_\epsilon$$

$$\sum \left(y_C : e \in C \in \mathscr{C} \right) \, = \, w_e$$

Do we always have a flow?

Do we always have a flow? NO

Do we always have a flow? NO

Do we always have a flow? NO

Demand across $\operatorname{cut} = 2 + 3$

Do we always have a flow? NO

Demand across $\operatorname{cut} = 2 + 3$

Capacity across $\operatorname{cut} = 4$

Do we always have a flow? NO

Demand across $\operatorname{cut} = 2 + 3$

Capacity across $\operatorname{cut} = 4$

 \longrightarrow

No flow

Do we always have a flow? NO

Demand across $\operatorname{cut} = 2 + 3$

Capacity across $\operatorname{cut} = 4$

No flow

The cut condition: For every cut:

Demand across the cut \leq Capacity across the cut.

Is the cut condition sufficient for existence of integer flow?

Is the cut condition sufficient for existence of integer flow? NO

All capacities/demands = 1

Is the cut condition sufficient for existence of integer flow? NO

All capacities/demands = 1

Is the cut condition sufficient for existence of integer flow? NO

All capacities/demands = 1

Theorem [Seymour 1977]

There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_4 minor.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma riangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma riangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle \delta(U)$ where $\delta(U)$ is a cut.

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle \delta(U)$ where $\delta(U)$ is a cut.

Theorem [Seymour 1977]

There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_4 minor.

Theorem [Seymour 1977]

There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_4 minor.

Is there an algorithmic version? YES

Theorem [Seymour 1977]

There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_4 minor.

Is there an algorithmic version? YES

Theorem [Truemper 1987]

There is a polytime algorithm with input G, Σ, w that returns:

- 1. an integer flow, OR
- 2. a cut violating the cut-condition, OR
- 3. a minor odd- K_4 .

Theorem [Seymour 1977]

There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_4 minor.

Is there an algorithmic version? $\underline{\rm YES}$

Theorem [Truemper 1987]

There is a polytime algorithm with input G, Σ, w that returns:

- 1. an integer flow, OR
- 2. a cut violating the cut-condition, OR
- 3. a minor odd- K_4 .

For this case we known everything we want to know

Fractional flow

Is this a bad example for fractional flows?

All capacities/demands = 1
Is this a bad example for fractional flows? NO

$$y_{C_1} = \frac{1}{2}$$
 $y_{C_3} = \frac{1}{2}$
 $y_{C_2} = \frac{1}{2}$ $y_{C_4} = \frac{1}{2}$

All capacities/demands = 1

Is this a bad example for fractional flows? NO

All capacities/demands
$$= 1$$

Is the cut-condition sufficient for the existence of a fractional flow?

Is this a bad example for fractional flows? NO

All capacities/demands
$$= 1$$

Is the cut-condition sufficient for the existence of a fractional flow? NO

Is the cut-condition sufficient for the existence of a fractional flow? NO

All capacities/demands = 1

Is the cut-condition sufficient for the existence of a fractional flow? NO

All capacities/demands = 1

 ${\rm Total} \ {\rm demand} = 4$

Is the cut-condition sufficient for the existence of a fractional flow? NO

- All capacities/demands = 1
- Total demand = 4
- Total capacity = 6

Is the cut-condition sufficient for the existence of a fractional flow? NO

All capacities/demands = 1 Total demand = 4 Total capacity = 6 Takes $\geq 2\epsilon$ capacity to carry ϵ flow

Is the cut-condition sufficient for the existence of a fractional flow? NO

All capacities/demands = 1 Total demand = 4 Total capacity = 6 Takes $\geq 2\epsilon$ capacity to carry ϵ flow NO FLOW

Is the cut-condition sufficient for the existence of a fractional flow? NO

All capacities/demands = 1 Total demand = 4 Total capacity = 6 Takes $\geq 2\epsilon$ capacity to carry ϵ flow NO FLOW

 $\mathsf{odd}\text{-}K_5$

Theorem [G 2001]

There exists a fractional flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_5 minor.

Theorem [G 2001]

There exists a fractional flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_5 minor.

Is there an algorithmic version? $\underline{\rm YES}$

Theorem [G 2001]

There exists a fractional flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_5 minor.

Is there an algorithmic version? YES

Theorem [G, Stuive 2013]

There is a polytime algorithm with input G, Σ, w that returns:

- 1. a fractional flow, OR
- 2. a cut violating the cut-condition, OR
- 3. a minor odd- K_5 .

Theorem [G 2001]

There exists a fractional flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_5 minor.

Is there an algorithmic version? $\underline{\rm YES}$

Theorem [G, Stuive 2013]

There is a polytime algorithm with input G, Σ, w that returns:

- 1. a fractional flow, OR
- 2. a cut violating the cut-condition, OR
- 3. a minor odd- K_5 .

For this case we known everything we want to know

Weights $w_e \in Z_{\geq 0}$ for $e \in E(G)$ are Eulerian if for every $v \in V(G)$

 $w\left(\delta(v)
ight)$ is even.

Weights $w_e \in Z_{\geq 0}$ for $e \in E(G)$ are Eulerian if for every $v \in V(G)$

 $w\left(\delta(v)\right)$ is even.

All capacities/demands = 1

Weights $w_e \in Z_{\geq 0}$ for $e \in E(G)$ are Eulerian if for every $v \in V(G)$

 $w\left(\delta(v)\right)$ is even.

All capacities/demands = 1Not Eulerian !!!

Weights $w_e \in Z_{\geq 0}$ for $e \in E(G)$ are Eulerian if for every $v \in V(G)$

 $w\left(\delta(v)\right)$ is even.

All capacities/demands = 1Not Eulerian !!!

When is the cut-condition sufficient for the existence of an integer flow for the case of Eulerian demands/capacities?

Theorem [Geelen, G 2002]

There exists an integer flow if

- $1. \ the \ demands/capacities \ are \ Eulerian,$
- 2. the cut-condition holds,
- 3. there is no odd- K_5 minor.

Theorem [Geelen, G 2002]

There exists an integer flow if

- 1. the demands/capacities are Eulerian,
- 2. the cut-condition holds,
- 3. there is no odd- K_5 minor.

Is there an algorithmic version?

Theorem [Geelen, G 2002]

There exists an integer flow if

- $1. \ the \ demands/capacities \ are \ Eulerian,$
- 2. the cut-condition holds,
- 3. there is no odd- K_5 minor.

Is there an algorithmic version? NO

Theorem [Geelen, G 2002]

There exists an integer flow if

- 1. the demands/capacities are Eulerian,
- 2. the cut-condition holds,
- 3. there is no odd- K_5 minor.

Is there an algorithmic version? NO

Open problem

Find a polytime algorithm with input G, Σ and w Eulerian that returns:

- 1. an integer flow, OR
- 2. a cut violating the cut-condition, OR
- 3. a minor odd- K_5 .

Let (G, Σ) be a signed graph.

Let (G, Σ) be a signed graph.

edges in Σ are odd the other edges are even

Let (G, Σ) be a signed graph.

edges in Σ are odd the other edges are even

 $B \subseteq E(G)$ is odd (resp. even) if $|B \cap \Sigma|$ is odd (resp. even)

Let (G, Σ) be a signed graph.

edges in Σ are odd the other edges are even

 $B \subseteq E(G)$ is odd (resp. even) if $|B \cap \Sigma|$ is odd (resp. even)

Flow instance: all capacities/demands = 1

Flow instance: all capacities/demands = 1

Flow instance: all capacities/demands = 1

 C_1, C_2, C_3 (edge) disjoint

Flow instance: all capacities/demands = 1

 C_1, C_2, C_3 (edge) disjoint

 $\{e_1, e_2, e_3\}$ intersect all odd circuits.

Flow instance: all capacities/demands = 1

 C_1, C_2, C_3 (edge) disjoint $\{e_1, e_2, e_3\}$ intersect all odd circuits.

In general:

If there exists an integer flow then

min number of edges needed to intersect the odd circuits = max number of pairwise disjoint odd circuits.

Flow instance: all capacities/demands = 1

 C_1, C_2, C_3 (edge) disjoint $\{e_1, e_2, e_3\}$ intersect all odd circuits.

In general:

If there exists an integer flow then

min number of edges needed to intersect the odd circuits = max number of pairwise disjoint odd circuits.

We say that the odd circuits pack.

Flow instance: all capacities/demands = 1

$$y_{C_1} = \frac{1}{2} \ y_{C_2} = \frac{1}{2} \ y_{C_3} = \frac{1}{2} \ y_{C_4} = \frac{1}{2}$$

 $\{e_1, e_2\}$ intersect all odd odd circuits

Flow instance: all capacities/demands = 1

$$y_{C_1} = \frac{1}{2} \ y_{C_2} = \frac{1}{2} \ y_{C_3} = \frac{1}{2} \ y_{C_4} = \frac{1}{2}$$

 $\{e_1, e_2\}$ intersect all odd odd circuits

In general:

If there exists a fractional flow then

Flow instance: all capacities/demands = 1

$$y_{C_1} = \frac{1}{2} \ y_{C_2} = \frac{1}{2} \ y_{C_3} = \frac{1}{2} \ y_{C_4} = \frac{1}{2}$$

 $\{e_1, e_2\}$ intersect all odd odd circuits

In general:

If there exists a fractional flow then

We say that the odd circuits fractionally pack.

Restating the theorems

Theorem [Seymour 1977]

There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_4 minor.

Theorem

The odd circuits pack if there is no odd- K_4 minor.
Restating the theorems

Theorem [G 2001]

There exists a fractional flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_5 minor.

Theorem

The odd circuits fractionally pack if there is no odd- K_5 minor.

Restating the theorems

Theorem [Geelen, G 2002] Suppose the demand/capacities are Eulerian. There exists an integer flow if

- 1. the cut-condition holds,
- 2. there is no odd- K_5 minor.

Theorem

The odd circuits of an Eulerian graph pack if there is no odd- K_5 minor.

Let (G, Σ) be a signed graph. Then

- (a) the odd circuits pack if no odd- K_4 minor.
- (b) the odd circuits fractionally pack if no odd- K_5 minor.
- (c) the odd circuits pack if no odd- K_5 minor and the graph is Eulerian.

Let (G, Σ) be a signed graph. Then

(a) the odd circuits pack if no odd- K_4 minor.

(b) the odd circuits fractionally pack if no odd- K_5 minor.

(c) the odd circuits pack if no odd- K_5 minor and the graph is Eulerian.

Let (G, Σ) be a signed graph. Then

(a) the odd circuits pack if no odd- K_4 minor.

(b) the odd circuits fractionally pack if no odd- K_5 minor.

(c) the odd circuits pack if no odd- K_5 minor and the graph is Eulerian.

Question

What can we say if we replace

"signed graphs" by "signed binary matroids"?

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Definition

• C is a cycle of matroid M_A iff $C \in rowspan(A)^{\perp}$

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Definition

- C is a cycle of matroid M_A iff $C \in rowspan(A)^{\perp}$
- C is a cocycle of matroid M_A iff $C \in rowspan(A)$

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Definition

- C is a cycle of matroid M_A iff $C \in rowspan(A)^{\perp}$
- C is a cocycle of matroid M_A iff $C \in rowspan(A)$
- Inclusion-wise minimal cycles are circuits

$$A = \left(\qquad \mathsf{cuts of } G \right)$$

$$A = \left(\begin{array}{c} \operatorname{cuts} \text{ of } G \end{array} \right)$$

- cycles of M_A are cycles of G.
- cocycles of M_A are cuts of G.

Example: Let G be a graph,

$$A = \left(\qquad \mathsf{cuts of } G \qquad \right)$$

- cycles of M_A are cycles of G.
- cocycles of M_A are cuts of G.

 M_A is graphic

$$A = \begin{pmatrix} & \text{cycles of } G \end{pmatrix}$$

$$A = \left(\begin{array}{c} \text{cycles of } G \end{array} \right)$$

- cycles of M_A are cuts of G.
- cocycles of M_A are cycles of G.

Example: Let G be a graph,

$$A = \left(\begin{array}{c} \text{cycles of } G \end{array} \right)$$

• cycles of M_A are cuts of G.

• cocycles of M_A are cycles of G.

 M_A is co-graphic

 (M, Σ) is a signed matroid if M is a binary matroid and $\Sigma \subseteq E(M)$.

 (M, Σ) is a signed matroid if M is a binary matroid and $\Sigma \subseteq E(M)$. $B \subseteq E(G)$ is odd (resp. even) if $|B \cap \Sigma|$ is odd (resp. even).

 (M, Σ) is a signed matroid if M is a binary matroid and $\Sigma \subseteq E(M)$. $B \subseteq E(G)$ is odd (resp. even) if $|B \cap \Sigma|$ is odd (resp. even).

 Σ = set of all elements

odd circuit

even circuit

Fano matroid

 (M, Σ) is a signed matroid if M is a binary matroid and $\Sigma \subseteq E(M)$. elements in Σ are odd the other elements are even

 (M, Σ) is a signed matroid if M is a binary matroid and $\Sigma \subseteq E(M)$. elements in Σ are odd the other elements are even $B \subseteq E(G)$ is odd (resp. even) if $|B \cap \Sigma|$ is odd (resp. even).

 (M, Σ) is a signed matroid if M is a binary matroid and $\Sigma \subseteq E(M)$. elements in Σ are odd the other elements are even $B \subset E(G)$ is odd (resp. even) if $|B \cap \Sigma|$ is odd (resp. even).

Minors for (M, Σ) :

- Delete $e \in E(G)$,
- Contract $e \notin \Sigma$,
- Resign: replace Σ by $\Sigma \triangle B$ where B is a cocycle.

Packing odd circuits in binary matroids

Recall:

Theorem

For a signed graph. The odd circuits pack if there is no odd- K_4 minor.

Packing odd circuits in binary matroids

Recall:

Theorem

For a signed graph. The odd circuits pack if there is no odd- K_4 minor.

This extends to,

Theorem [Seymour 1977] For a signed matroid. The odd circuits pack if there is no odd- K_4 minor.

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"?

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? \overline{NO}

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

 $\mathsf{odd}\ \mathsf{circuits} = \mathsf{lines}$

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

odd circuits = lines

3 elements to intersect all odd circuits

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

odd circuits = lines

3 elements to intersect all odd circuits

fractional packing value $\frac{7}{3}$

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

 $\Sigma = \text{set of all elements}$

odd circuits = lines

3 elements to intersect all odd circuits

fractional packing value $\frac{7}{3}$

does not fractionally pack

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

odd circuits = complements of cuts
Fractionally packing odd circuits in binary matroids

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

odd circuits = complements of cuts

3 elements to intersect all odd circuits

Fractionally packing odd circuits in binary matroids

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

odd circuits = complements of cuts

3 elements to intersect all odd circuits

fractional packing value $\frac{10}{4}$

Fractionally packing odd circuits in binary matroids

Recall:

Theorem [G 2001]

For a signed graph. The odd circuits fractionally pack if there is no odd- K_5 minor.

Can we replace "signed graph" by "signed matroid"? NO

odd circuits = complements of cuts 3 elements to intersect all odd circuits fractional packing value $\frac{10}{4}$ does not fractionally pack

Conjecture [Seymour 1977]

The odd circuits of a signed matroid fractionally pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 .

Conjecture [Seymour 1977]

The odd circuits of a signed matroid fractionally pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 .

\$5000 cash prize !!! (Gérard Cornuéjols)

Conjecture [Seymour 1977]

The odd circuits of a signed matroid fractionally pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 .

\$5000 cash prize !!! (Gérard Cornuéjols)

Some known cases:

- Graphic (earlier theorem),
- Cographic (Edmond's matching polyhedron)

Conjecture [Seymour 1977]

The odd circuits of a signed matroid fractionally pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 .

\$5000 cash prize !!! (Gérard Cornuéjols)

Some known cases:

- Graphic (earlier theorem),
- Cographic (Edmond's matching polyhedron)

Any hope for a complete proof?

Conjecture [Seymour 1977]

The odd circuits of a signed matroid fractionally pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 .

\$5000 cash prize !!! (Gérard Cornuéjols)

Some known cases:

- Graphic (earlier theorem),
- Cographic (Edmond's matching polyhedron)

Any hope for a complete proof? MAYBE

Good Fano

Bad Fano Type I

Bad Fano Type II

Theorem [Cornuéjols, G 2002]

Suppose conjecture is false.

Then there exists a counterexample that has a Bad Fano as a minor.

Theorem [Cornuéjols, G 2002]

Suppose conjecture is false.

Then there exists a counterexample that has a Bad Fano as a minor.

We can show

Theorem [Abdi, G 2014]

Suppose conjecture is false.

Then there exists a counterexample with "many" Bad Fanos as a minor.

Theorem [Cornuéjols, G 2002]

Suppose conjecture is false.

Then there exists a counterexample that has a Bad Fano as a minor.

We can show

Theorem [Abdi, G 2014]

Suppose conjecture is false.

Then there exists a counterexample with "many" Bad Fanos as a minor.

What do we mean by "many"?

Good Fano

Bad Fano type I

Bad Fano Type II

Good Fano

Bad Fano type I

Bad Fano Type II

Definition

 (N,Γ) is an *e*-minor of (M,Σ) if

- it is a minor of (M, Σ) ,
- $e \in E(N)$.

Good Fano

Bad Fano type I

Bad Fano Type II

Definition

 (N,Γ) is an e-minor of (M,Σ) if

- it is a minor of (M, Σ) ,
- $e \in E(N)$.

We can say what "many Bad Fanos" means now.

Good Fano

Bad Fano type I

Bad Fano Type II

Definition

 (N,Γ) is an e-minor of (M,Σ) if

- it is a minor of (M, Σ) ,
- $e \in E(N)$.

We can say what "many Bad Fanos" means now.

Theorem [Abdi, G 2014]

Suppose conjecture is false.

Then there exists a counterexample (M, Σ) such that,

- 1. for every element $e\ {\rm there}\ {\rm is}\ {\rm a}\ {\rm Bad}\ {\rm Fano}\ {\rm of}\ {\rm Type}\ {\rm I}\ {\rm as}\ {\rm an}\ e{\rm -minor,}\ {\rm and}$
- 2. for every element e there is a Bad Fano of Type II as an $e\mbox{-minor}.$

Theorem [Abdi, G 2014]

Suppose conjecture is false.

Then there exists a counterexample (M, Σ) such that,

- 1. for every element $e\ {\rm there}\ {\rm is}\ {\rm a}\ {\rm Bad}\ {\rm Fano}\ {\rm of}\ {\rm Type}\ {\rm I}\ {\rm as}\ {\rm an}\ e\mbox{-minor, and}$
- 2. for every element e there is a Bad Fano of Type II as an e-minor.

Theorem [Abdi, G 2014]

Suppose conjecture is false.

Then there exists a counterexample (M, Σ) such that,

- 1. for every element e there is a Bad Fano of Type I as an $e\mbox{-minor, and}$
- 2. for every element e there is a Bad Fano of Type II as an e-minor.

Counterexamples are highly connected !!!

Theorem [Cornuéjols,G 2002]

For every "minimal" counterexample (M, Σ) , M is internally 4-connected. This applies to the previous theorem.

Theorem [Abdi, G 2014]

Suppose conjecture is false.

Then there exists a counterexample (M, Σ) such that,

- 1. for every element $e\ {\rm there}\ {\rm is}\ {\rm a}\ {\rm Bad}\ {\rm Fano}\ {\rm of}\ {\rm Type}\ {\rm I}\ {\rm as}\ {\rm an}\ e\mbox{-minor, and}$
- 2. for every element e there is a Bad Fano of Type II as an e-minor.

Counterexamples are highly connected !!!

Theorem [Cornuéjols,G 2002]

For every "minimal" counterexample (M, Σ) , M is internally 4-connected. This applies to the previous theorem.

Recall:

Theorem [Geelen,G 2002]

For an Eulerian signed graph. The odd circuits pack if there is no odd- $\!K_5$ minor.

Recall:

Theorem [Geelen,G 2002]

For an Eulerian signed graph. The odd circuits pack if there is no odd- K_5 minor.

Let us try to generalize to binary matroids.

Recall:

Theorem [Geelen,G 2002]

For an Eulerian signed graph. The odd circuits pack if there is no odd- K_5 minor.

Let us try to generalize to binary matroids.

- Eulerian graph: for every cut B, |B| is even,
- Eulerian matroid: for every cocycle B, |B| is even.

Recall:

Theorem [Geelen,G 2002]

For an Eulerian signed graph. The odd circuits pack if there is no odd- K_5 minor.

Let us try to generalize to binary matroids.

- Eulerian graph: for every cut B, |B| is even,
- Eulerian matroid: for every cocycle B, |B| is even.

What do we need to excluded for the odd circuits to pack:

- odd- K_5 ,
- the lines of the Fano,
- complements of cuts of K_5 ,
- ???

Remark

There is a signed binary matroid where the odd circuits are exactly the postman set of the Petersen graph.

Remark

There is a signed binary matroid where the odd circuits are exactly the postman set of the Petersen graph.

Remark

There is a signed binary matroid where the odd circuits are exactly the postman set of the Petersen graph.

Remark

Remark

There is a signed binary matroid where the odd circuits are exactly the postman set of the Petersen graph. The cocycles are cuts of the form $\delta(U)$ where |U| is even.

• For every cocycle B, |B| is even, thus the matroid is Eulerian,

Remark

- For every cocycle B, |B| is even, thus the matroid is Eulerian,
- Need to select 3 edges to intersect all postman sets,

Remark

- For every cocycle B, |B| is even, thus the matroid is Eulerian,
- Need to select 3 edges to intersect all postman sets,
- No 3 disjoint postman sets as Petersen has no 3-colouring,

Remark

- For every cocycle B, |B| is even, thus the matroid is Eulerian,
- Need to select 3 edges to intersect all postman sets,
- No 3 disjoint postman sets as Petersen has no 3-colouring,
- The odd circuits of signed matroid do not pack.

Conjecture [Seymour 1981]

The odd circuits of a signed Eulerian matroid pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 ,
- the postman sets of the Petersen.

Conjecture [Seymour 1981]

The odd circuits of a signed Eulerian matroid pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 ,
- the postman sets of the Petersen.

Some known cases:

Conjecture [Seymour 1981]

The odd circuits of a signed Eulerian matroid pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 ,
- the postman sets of the Petersen.

Some known cases:

• Graphic (earlier theorem),

Conjecture [Seymour 1981]

The odd circuits of a signed Eulerian matroid pack if it does not have any of the following minors:

- odd- K_5 ,
- the lines of the Fano,
- the complements of cuts of K_5 ,
- the postman sets of the Petersen.

Some known cases:

- Graphic (earlier theorem),
- Cographic?

The co-graphic case of the Cycling conjecture

Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).
Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).

• M Eulerian thus G bipartite,

Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).

- M Eulerian thus G bipartite,
- Let T be vertices of odd degree of $G[\Sigma],$ then

 $|\delta(U)\cap\Sigma|~~{\rm odd}$ is odd if and only $|U\cap T|~{\rm odd}$

Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).

- M Eulerian thus G bipartite,
- Let T be vertices of odd degree of $G[\Sigma],$ then

 $|\delta(U)\cap\Sigma|~~{\rm odd}$ is odd if and only $|U\cap T|~{\rm odd}$

• Odd circuits of signed matroid are $T\text{-}{\rm cuts}$

Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).

- M Eulerian thus G bipartite,
- Let T be vertices of odd degree of $G[\Sigma],$ then

 $|\delta(U)\cap\Sigma|~~{\rm odd}$ is odd if and only $|U\cap T|~{\rm odd}$

- Odd circuits of signed matroid are $T\text{-}{\rm cuts}$
- No forbidden obstruction

Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).

- M Eulerian thus G bipartite,
- Let T be vertices of odd degree of $G[\Sigma],$ then

 $|\delta(U)\cap\Sigma|\;\; {\rm odd}\; {\rm is\; odd}\; {\rm if\; and\; only\;} |U\cap T|\; {\rm odd\;}$

- Odd circuits of signed matroid are $T\text{-}{\rm cuts}$
- No forbidden obstruction
- The odd-circuits of (M,Σ) pack

Consider (M, Σ) where M is cographic (cycles of M = cuts of graph G).

- M Eulerian thus G bipartite,
- Let T be vertices of odd degree of $G[\Sigma],$ then

 $|\delta(U)\cap\Sigma|\;\; {\rm odd}\; {\rm is\; odd}\; {\rm if\; and\; only\;} |U\cap T|\; {\rm odd\;}$

- Odd circuits of signed matroid are T-cuts
- No forbidden obstruction
- The odd-circuits of (M,Σ) pack

Theorem [Seymour]

In a bipartite graph the size of the minimum $T\mbox{-join}$ is equal to the maximum number of pairwise disjoint $T\mbox{-cuts}.$

The Cycling conjecture is really, really hard :(

The Cycling conjecture is really, really hard :(

A consequence of the Cycling conjecture (if true):

Cubic graphs with no Petersen minors are 3-edge colourable

Implies the 4-colour theorem

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

What does this say for loopless planar graphs?

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

What does this say for loopless planar graphs?

•
$$k \geq 3$$
,

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

What does this say for loopless planar graphs?

- $k \geq 3$,
- exists cuts $\delta(U_1), \delta(U_2)$ and $E(G) \subseteq \delta(U_1) \cup \delta(U_2)$.

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

What does this say for loopless planar graphs?

- $k \geq 3$,
- exists cuts $\delta(U_1), \delta(U_2)$ and $E(G) \subseteq \delta(U_1) \cup \delta(U_2)$.

Implies the 4-colour theorem

What to do next

Cycling conjecture holds for

- graphic matroids,
- co-graphic matroids,
- implies the 4-colour in general.

Question

Interesting cases that does not imply the 4-colour theorem?

Definition

Let M be binary matroid, $e \in E(M)$. An *e*-path is a set of the form $C - \{e\}$ where C is a circuit of M.

M graphic matroid of G with e = (s, t)then e-paths are st-paths

Definition

Let M be binary matroid, $e \in E(M)$. An *e*-path is a set of the form $C - \{e\}$ where C is a circuit of M.

M graphic matroid of G with e = (s, t)then e-paths are st-paths

Remark

The following are equivalent for a family of sets \mathcal{S} .

Definition

Let M be binary matroid, $e \in E(M)$. An *e*-path is a set of the form $C - \{e\}$ where C is a circuit of M.

M graphic matroid of G with e = (s, t)then e-paths are st-paths

Remark

The following are equivalent for a family of sets S.

1. ${\mathcal S}$ is the set of odd circuits of a signed binary matroid,

Definition

Let M be binary matroid, $e \in E(M)$. An *e*-path is a set of the form $C - \{e\}$ where C is a circuit of M.

M graphic matroid of G with e = (s, t)then e-paths are st-paths

Remark

The following are equivalent for a family of sets S.

- 1. ${\mathcal S}$ is the set of odd circuits of a signed binary matroid,
- 2. S is the set of *e*-paths of a binary matroid.

Definition

Let M be binary matroid, $e \in E(M)$. An *e*-path is a set of the form $C - \{e\}$ where C is a circuit of M.

M graphic matroid of G with e = (s, t)then e-paths are st-paths

Remark

The following are equivalent for a family of sets S.

- 1. ${\mathcal S}$ is the set of odd circuits of a signed binary matroid,
- 2. ${\mathcal S}$ is the set of e-paths of a binary matroid.
- 3. (S is a binary clutter.)

Remark

The following are equivalent for a family of sets \mathcal{S} .

- 1. ${\mathcal S}$ is the set of odd circuits of a signed binary matroid,
- 2. ${\mathcal S}$ is the set of e-paths of a binary matroid.
- 3. (S is a binary clutter.)

Remark

The following are equivalent for a family of sets \mathcal{S} .

- 1. ${\mathcal S}$ is the set of odd circuits of a signed binary matroid,
- 2. ${\mathcal S}$ is the set of e-paths of a binary matroid.
- 3. (S is a binary clutter.)

Idea

Find classes of matroids generalizing graphic and co-graphic and study the cycling conjecture for the *e*-paths of these matroids.

Let ${\cal G}$ be a graph

$$A = \left(\qquad \text{cuts of } G \qquad \right)$$

Let ${\cal G}$ be a graph

$$A = \begin{pmatrix} & \text{cuts of } G & \end{pmatrix}$$

Then M_A is graphic matroid of G

Let (G,Σ) be a signed graph

Let (G, Σ) be a signed graph

$$A = \left(\begin{array}{c} \operatorname{cuts} \text{ of } G \\ \hline \Sigma \end{array} \right)$$

Let (G, Σ) be a signed graph

$$A = \begin{pmatrix} & \mathsf{cuts} \text{ of } G & \\ & & \\ \hline & & \\ &$$

We define M_A to be the even cycle matroid of (G, Σ) .

Let (G,Σ) be a signed graph

$$A = \begin{pmatrix} \mathsf{cuts} \text{ of } G \\ \hline \Sigma \end{pmatrix}$$

We define M_A to be the even cycle matroid of (G, Σ) .

Why the name? cycles of M_A = even cycles of (G, Σ) .

Let (G,Σ) be a signed graph

$$A = \begin{pmatrix} \mathsf{cuts} \text{ of } G \\ \hline \Sigma \end{pmatrix}$$

We define M_A to be the even cycle matroid of (G, Σ) .

Why the name? cycles of M_A = even cycles of (G, Σ) . Circuits of M_A :

Circuits of even cycle matroid of (G, Σ) .

Circuits of even cycle matroid of (G, Σ) .

Assume $e \in \Sigma$.

• If e is loop, then e-paths = odd circuits

Circuits of even cycle matroid of (G, Σ) .

Assume $e \in \Sigma$.

- If e is loop, then e-paths = odd circuits
- If *e* not loop, then *e*-paths are

Assume $e \in \Sigma$.

- If e is loop, then e-paths = odd circuits
- If e not loop, then e-paths are

Assume $e \in \Sigma$.

- If e is loop, then e-paths = odd circuits
- If e not loop, then e-paths are

Thus,

e-paths of even cycle matroids = odd *T*-joins of signed graph with $|T| \le 2$.

A special case of the Cycling conjecture

Theorem [Abdi, G 2014]

The Cycling conjecture holds for e-paths of even cycle matroids.

A special case of the Cycling conjecture

Theorem [Abdi, G 2014]

The Cycling conjecture holds for e-paths of even cycle matroids.

What does it say?
Theorem [Abdi, G 2014]

The Cycling conjecture holds for *e*-paths of even cycle matroids.

What does it say? reformulation ...

Theorem

Let (G, Σ) be a signed graph and $|T| \leq 2$. The odd T-joins pack if

- 1. Eulerian condition holds,
- 2. none of the following minors: odd- K_5 , lines of Fano.

Theorem [Abdi, G 2014]

The Cycling conjecture holds for *e*-paths of even cycle matroids.

What does it say? reformulation ...

Theorem

Let (G, Σ) be a signed graph and $|T| \leq 2$. The odd T-joins pack if

- 1. Eulerian condition holds,
- 2. none of the following minors: odd- K_5 , lines of Fano.

The Eulerian condition

The Eulerian condition for (G,Σ) and $|T|\leq 2$ says,

- if $v \notin T$ then degree of v is even,
- if $v \in T$ then parity of degree of v is same as parity of $|\Sigma|$.

The Eulerian condition

The Eulerian condition for (G, Σ) and $|T| \leq 2$ says,

- if $v \notin T$ then degree of v is even,
- if $v \in T$ then parity of degree of v is same as parity of $|\Sigma|$.

Is it really needed?

The Eulerian condition

The Eulerian condition for (G,Σ) and $|T|\leq 2$ says,

- if $v \notin T$ then degree of v is even,
- if $v \in T$ then parity of degree of v is same as parity of $|\Sigma|$.

Is it really needed? $\underline{\rm YES}$

$$T = \emptyset$$

Does not pack

|T| = 2

Does not pack

Special cases

Theorem

Let (G,Σ) be a signed graph and $|T|\leq 2.$ The odd T-joins pack if

- 1. Eulerian condition holds,
- 2. none of the following minors: odd- K_5 , lines of Fano.

Special cases

Theorem

Let (G, Σ) be a signed graph and $|T| \leq 2$. The odd T-joins pack if

- 1. Eulerian condition holds,
- 2. none of the following minors: odd- K_5 , lines of Fano.

Question

Any interesting special cases? MANY

Special case: Packing odd cycles

Special case: $T = \emptyset$

Theorem [Geelen,G 2002]

For an Eulerian signed graph. The odd circuits pack if there is no odd- K_5 minor.

Special case: Packing *T*-joins

Special case: $(G, \Sigma) \setminus v$ bipartite for $v \notin T$

Theorem

Let G be a graph and $|T| \leq 4$. Suppose vertices not in T have even degree and vertices in T have degrees of the same parity. Then the minimum size of a T-cut is equal to the maximum number of pairwise disjoint T-joins.

Special case: Packing *T*-joins

Special case: $(G, \Sigma) \setminus v$ bipartite for $v \notin T$

Theorem

Let G be a graph and $|T| \leq 4$. Suppose vertices not in T have even degree and vertices in T have degrees of the same parity. Then the minimum size of a T-cut is equal to the maximum number of pairwise disjoint T-joins.

Holds for $|T| \leq 8$ (Cohen 97)

Special case: 2-commodity flow

Special case:
$$T = \{s, t\}$$
, $(G, \Sigma) \setminus \{s, t\}$ bipartite

Theorem [Hu 63, Rothschild, Whinston 66]

Let G be a graph with vertices s_1, t_1, s_2, t_2 . Suppose all of s_1, t_1, s_2, t_2 have the same degree parity and all the other vertices have even degree. Then the minimum number of edges needed to intersect all $s_i t_i$ paths equals the maximum number of pairwise disjoint $s_i t_i$ -paths (i = 1, 2).

Special case: *G* plane graph

Special case: G plane graph

Let (\star) be a graph obtained as follows:

Special case: G plane graph

Let (\star) be a graph obtained as follows:

1. start with a plane graph with exactly two odd faces F_1, F_2 ,

Special case: G plane graph

Let (\star) be a graph obtained as follows:

- 1. start with a plane graph with exactly two odd faces F_1, F_2 ,
- 2. identify a pair of vertices a, b.

Special case: G plane graph

Let (\star) be a graph obtained as follows:

- 1. start with a plane graph with exactly two odd faces F_1, F_2 ,
- 2. identify a pair of vertices a, b.

Theorem

Let G as in (*). If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

Let (\star) be a graph obtained as follows:

- 1. start with a plane graph with exactly two odd faces F_1, F_2 ,
- 2. identify a pair of vertices a, b.

Thus we proved the following conjecture for graphs of type (\star) !!!

Conjecture

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

Let (\star) be a graph obtained as follows:

- 1. start with a plane graph with exactly two odd faces F_1, F_2 ,
- 2. identify a pair of vertices a, b.

Thus we proved the following conjecture for graphs of type (\star) !!!

Conjecture

Suppose (G, E(G)) has no odd- K_5 minor. If the length of the shortest odd cycle is k, then there exists cuts B_1, \ldots, B_k such that every edge e is in at least k - 1 of B_1, \ldots, B_k .

Open problem

Prove the conjecture for the class of graphs obtained from a plane graph with exactly two odd faces by adding an apex vertex.

Special cases: topological classes

Theorem

Let (G,Σ) be a signed graph and $|T|\leq 2.$ The odd T-joins pack if

- 1. Eulerian condition holds,
- 2. none of the following minors: odd- K_5 , lines of Fano.

Special cases: topological classes

Theorem

Let (G, Σ) be a signed graph and $|T| \leq 2$. The odd T-joins pack if

- 1. Eulerian condition holds,
- 2. none of the following minors: odd- K_5 , lines of Fano.

Question

What are topological classes without odd- K_5 or lines of Fano minor?

What are topological classes without odd- K_5 or lines of Fano minor?

What are topological classes without odd- K_5 or lines of Fano minor?

Example:

 $T = \{s, t\}$

 ${\boldsymbol{G}}$ is a plane graph

 $(G, \Sigma) \setminus \{a, b\}$ bipartite

What are topological classes without odd- K_5 or lines of Fano minor?

What are topological classes without odd- K_5 or lines of Fano minor?

Example:

- $T=\{s,t\}$
- $\left(s,t\right)$ is an edge

 $({\cal G},\Sigma)$ has embedding on projective plane where every face is even

odd cycles of graphic matroids	Geelen, G
--------------------------------	-----------

odd cycles of graphic matroids	Geelen, G
odd cycles of co-graphic matroids	Seymour

odd cycles of graphic matroids	Geelen, G
odd cycles of co-graphic matroids	Seymour
e-path of even-cycle	Abdi, G

odd cycles of graphic matroids	Geelen, G
odd cycles of co-graphic matroids	Seymour
e-path of even-cycle	Abdi, G
e-path of even-cut	OPEN

odd cycles of graphic matroids	Geelen, G
odd cycles of co-graphic matroids	Seymour
e-path of even-cycle	Abdi, G
<i>e</i> -path of even-cut	OPEN
e-path of dual of even-cycle	Implies 4-colour theorem

odd cycles of graphic matroids	Geelen, G
odd cycles of co-graphic matroids	Seymour
e-path of even-cycle	Abdi, G
e-path of even-cut	OPEN
e-path of dual of even-cycle	Implies 4-colour theorem
e-path of dual of even-cut	Implies 4-colour theorem

Thank you for your attention