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Defining flows

A flow instance:

• Graph G = (V,E)

• Demand edges: Σ ⊆ E(G)

• Capacity edges: E(G) \ Σ

• Integer weights we ≥ 0 for all e ∈ E
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Let C be the set of circuits containing exactly one demand edge.

yC ≥ 0 for all C ∈ C is a flow if

Capacity constraints: for every capacity edge e,∑
(yC : e ∈ C ∈ C ) ≤ we

Demand constraints: for every demand edge e,∑
(yC : e ∈ C ∈ C ) = we
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A necessary condition

Do we always have a flow?

NO
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Demand across cut = 2 + 3

Capacity across cut = 4

No flow

The cut condition: For every cut:

Demand across the cut ≤ Capacity across the cut.
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Integer flow

Is the cut condition sufficient for existence of integer flow?

NO

All capacities/demands = 1
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Integer flow

Is the cut condition sufficient for existence of integer flow? NO

All capacities/demands = 1

Theorem [Seymour 1977]

There exists an integer flow if

1. the cut-condition holds,

2. there is no odd-K4 minor.
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A pair (G,Σ) where Σ ⊆ E(G) is a signed graph. Σ is the signature

Minors for (G,Σ):

• Delete e ∈ E(G),

• Contract e /∈ Σ,

• Resign: replace Σ by Σ4δ(U) where δ(U) is a cut.
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A pair (G,Σ) where Σ ⊆ E(G) is a signed graph. Σ is the signature

Minors for (G,Σ):

• Delete e ∈ E(G),

• Contract e /∈ Σ,

• Resign: replace Σ by Σ4δ(U) where δ(U) is a cut.

odd-K4
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The integer flow theorem for graphs

Theorem [Seymour 1977]

There exists an integer flow if

1. the cut-condition holds,

2. there is no odd-K4 minor.

Is there an algorithmic version? YES

Theorem [Truemper 1987]

There is a polytime algorithm with input G,Σ, w that returns:

1. an integer flow, OR

2. a cut violating the cut-condition, OR

3. a minor odd-K4.

For this case we known everything we want to know
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Fractional flow

Is this a bad example for fractional flows?

All capacities/demands = 1
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Fractional flow

Is this a bad example for fractional flows? NO

yC1 =
1
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All capacities/demands = 1

Is the cut-condition sufficient for the existence of a fractional flow? NO
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Fractional flow

Is the cut-condition sufficient for the existence of a fractional flow? NO

All capacities/demands = 1

Total demand = 4

Total capacity = 6

Takes ≥ 2ε capacity to carry ε flow

No flow

odd-K5
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The fractional flow theorem for graphs

Theorem [G 2001]

There exists a fractional flow if

1. the cut-condition holds,

2. there is no odd-K5 minor.

Is there an algorithmic version? YES

Theorem [G, Stuive 2013]

There is a polytime algorithm with input G,Σ, w that returns:

1. a fractional flow, OR

2. a cut violating the cut-condition, OR

3. a minor odd-K5.

For this case we known everything we want to know
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Integer flows - revisited

Weights we ∈ Z≥0 for e ∈ E(G) are Eulerian if for every v ∈ V (G)

w (δ(v)) is even.

All capacities/demands = 1
Not Eulerian !!!

When is the cut-condition sufficient for the existence of an integer flow
for the case of Eulerian demands/capacities?
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The Eulerian integer flow theorem for graphs

Theorem [Geelen, G 2002]

There exists an integer flow if

1. the demands/capacities are Eulerian,

2. the cut-condition holds,

3. there is no odd-K5 minor.

Is there an algorithmic version? NO

Open problem

Find a polytime algorithm with input G,Σ and w Eulerian that returns:

1. an integer flow, OR

2. a cut violating the cut-condition, OR

3. a minor odd-K5.
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Flow feasibility problems are minimax problems

Let (G,Σ) be a signed graph.

edges in Σ are odd the other edges are even

B ⊆ E(G) is odd (resp. even) if |B ∩ Σ| is odd (resp. even)

odd circuit

even circuit

odd
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Flow feasibility problems are minimax problems

Flow instance: all capacities/demands = 1

e1

e2 e3
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Flow feasibility problems are minimax problems

Flow instance: all capacities/demands = 1

e1

e2 e3

C1,C2,C3 (edge) disjoint

{e1, e2, e3} intersect all odd circuits.

In general:

If there exists an integer flow then

min number of edges needed to intersect the odd circuits =
max number of pairwise disjoint odd circuits.

We say that the odd circuits pack.
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Flow instance: all capacities/demands = 1

yC1 =
1

2
yC2 =

1

2
yC3 =

1

2
yC4 =

1

2e1 e2

{e1, e2} intersect all odd odd circuits

In general:

If there exists a fractional flow then

min {number of edges needed to intersect the odd circuits} =

max

 ∑
C:odd circuit

yC :
∑

e∈C:odd circuit

yC ≤ 1, e ∈ E(G)


We say that the odd circuits fractionally pack.
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Restating the theorems

Theorem [Seymour 1977]

There exists an integer flow if

1. the cut-condition holds,

2. there is no odd-K4 minor.

Theorem

The odd circuits pack if there is no odd-K4 minor.
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Restating the theorems

Theorem [G 2001]

There exists a fractional flow if

1. the cut-condition holds,

2. there is no odd-K5 minor.

Theorem

The odd circuits fractionally pack if there is no odd-K5 minor.
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Restating the theorems

Theorem [Geelen, G 2002]

Suppose the demand/capacities are Eulerian.
There exists an integer flow if

1. the cut-condition holds,

2. there is no odd-K5 minor.

Theorem

The odd circuits of an Eulerian graph pack if there is no odd-K5 minor.
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Let (G,Σ) be a signed graph. Then

(a) the odd circuits pack if no odd-K4 minor.

(b) the odd circuits fractionally pack if no odd-K5 minor.

(c) the odd circuits pack if no odd-K5 minor and the graph is Eulerian.

For weighted version, theorems 
are "if and only if"

Question

What can we say if we replace

”signed graphs” by ”signed binary matroids”?
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Binary matroids - everything you need to know

A =

1 0 0 1 0 1
0 1 0 0 1 0
0 0 1 1 1 1


Definition

• C is a cycle of matroid MA iff C ∈ rowspan(A)⊥

• C is a cocycle of matroid MA iff C ∈ rowspan(A)

• Inclusion-wise minimal cycles are circuits
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Binary matroids - everything you need to know

Example: Let G be a graph,

A =

 cuts of G



• cycles of MA are cycles of G.

• cocycles of MA are cuts of G.

MA is graphic
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Signed binary matroids

(M,Σ) is a signed matroid if M is a binary matroid and Σ ⊆ E(M).

B ⊆ E(G) is odd (resp. even) if |B ∩ Σ| is odd (resp. even).

⌃ = set of all elements

odd circuit

even circuit

Fano matroid
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Signed binary matroids

(M,Σ) is a signed matroid if M is a binary matroid and Σ ⊆ E(M).

elements in Σ are odd the other elements are even

B ⊆ E(G) is odd (resp. even) if |B ∩ Σ| is odd (resp. even).

Minors for (M,Σ):

• Delete e ∈ E(G),

• Contract e /∈ Σ,

• Resign: replace Σ by Σ4B where B is a cocycle.
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Packing odd circuits in binary matroids

Recall:

Theorem

For a signed graph.
The odd circuits pack if there is no odd-K4 minor.

This extends to,

Theorem [Seymour 1977]

For a signed matroid.
The odd circuits pack if there is no odd-K4 minor.
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Fractionally packing odd circuits in binary matroids

Recall:

Theorem [G 2001]

For a signed graph.
The odd circuits fractionally pack if there is no odd-K5 minor.

Can we replace ”signed graph” by ”signed matroid”? NO

⌃ = set of all elements

odd circuits = lines

3 elements to intersect all odd circuits

fractional packing value 7
3

does not fractionally pack
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Fractionally packing odd circuits in binary matroids

Recall:

Theorem [G 2001]

For a signed graph.
The odd circuits fractionally pack if there is no odd-K5 minor.

Can we replace ”signed graph” by ”signed matroid”? NO

odd circuits = complements of cuts

3 elements to intersect all odd circuits

fractional packing value 10
4

does not fractionally pack
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The Flowing conjecture

Conjecture [Seymour 1977]

The odd circuits of a signed matroid fractionally pack if it does not have
any of the following minors:

• odd-K5,

• the lines of the Fano,

• the complements of cuts of K5.

$5000 cash prize !!! (Gérard Cornuéjols)

Some known cases:

• Graphic (earlier theorem),

• Cographic (Edmond’s matching polyhedron)

Any hope for a complete proof? MAYBE
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There are only 3 non-bipartite signing of the Fano:

Good Fano Bad Fano Type I Bad Fano Type II 

not in ⌃in ⌃

Theorem [Cornuéjols, G 2002]

Suppose conjecture is false.
Then there exists a counterexample that has a Bad Fano as a minor.

We can show

Theorem [Abdi, G 2014]

Suppose conjecture is false.
Then there exists a counterexample with “many” Bad Fanos as a minor.

What do we mean by “many”?
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Good Fano Bad Fano type I Bad Fano Type II 

Definition

(N,Γ) is an e-minor of (M,Σ) if

• it is a minor of (M,Σ),

• e ∈ E(N).

We can say what “many Bad Fanos” means now.

Theorem [Abdi, G 2014]

Suppose conjecture is false.
Then there exists a counterexample (M,Σ) such that,

1. for every element e there is a Bad Fano of Type I as an e-minor, and

2. for every element e there is a Bad Fano of Type II as an e-minor.
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Theorem [Abdi, G 2014]

Suppose conjecture is false.
Then there exists a counterexample (M,Σ) such that,

1. for every element e there is a Bad Fano of Type I as an e-minor, and

2. for every element e there is a Bad Fano of Type II as an e-minor.

Counterexamples are highly connected !!!

Theorem [Cornuéjols,G 2002]

For every ”minimal” counterexample (M,Σ), M is internally
4-connected. This applies to the previous theorem.

Many bad Fanos + high 
connectivity. Does this imply we 

have a good Fano?
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Packing odd circuits in Eulerian binary matroids

Recall:

Theorem [Geelen,G 2002]

For an Eulerian signed graph.
The odd circuits pack if there is no odd-K5 minor.

Let us try to generalize to binary matroids.

• Eulerian graph: for every cut B, |B| is even,

• Eulerian matroid: for every cocycle B, |B| is even.

What do we need to excluded for the odd circuits to pack:

• odd-K5,

• the lines of the Fano,

• complements of cuts of K5,

• ???
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Here comes Petersen...

Remark

There is a signed binary matroid where the odd circuits are exactly the
postman set of the Petersen graph.
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Here comes Petersen...

Remark

There is a signed binary matroid where the odd circuits are exactly the
postman set of the Petersen graph. The cocycles are cuts of the form
δ(U) where |U | is even.

• For every cocycle B, |B| is even, thus the matroid is Eulerian,

• Need to select 3 edges to intersect all postman sets,

• No 3 disjoint postman sets as Petersen has no 3-colouring,

• The odd circuits of signed matroid do not pack.
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The Cycling conjecture

Conjecture [Seymour 1981]

The odd circuits of a signed Eulerian matroid pack if it does not have
any of the following minors:

• odd-K5,

• the lines of the Fano,

• the complements of cuts of K5,

• the postman sets of the Petersen.

Some known cases:

• Graphic (earlier theorem),

• Cographic?
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The co-graphic case of the Cycling conjecture

Consider (M,Σ) where M is cographic (cycles of M = cuts of graph G).

• M Eulerian thus G bipartite,

• Let T be vertices of odd degree of G[Σ], then

|δ(U) ∩ Σ| odd is odd if and only |U ∩ T | odd

T
⌃

• Odd circuits of signed matroid are T -cuts

• No forbidden obstruction

• The odd-circuits of (M,Σ) pack

Theorem [Seymour]

In a bipartite graph the size of the minimum T -join is equal to the
maximum number of pairwise disjoint T -cuts.
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The Cycling conjecture is really, really hard :(

A consequence of the Cycling conjecture (if true):

Cubic graphs with no Petersen minors are 3-edge colourable

Implies the 4-colour theorem
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Another consequence of the Cycling conjecture (if true):

Suppose (G,E(G)) has no odd-K5 minor. If the length of the shortest
odd cycle is k, then there exists cuts B1, . . . , Bk such that every edge e is
in at least k − 1 of B1, . . . , Bk.

What does this say for loopless planar graphs?

• k ≥ 3,

• exists cuts δ(U1), δ(U2) and E(G) ⊆ δ(U1) ∪ δ(U2).

U1 U1

U2

U2

stable stable

stable stable

Implies the 4-colour theorem
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What to do next

Cycling conjecture holds for

• graphic matroids,

• co-graphic matroids,

• implies the 4-colour in general.

Question

Interesting cases that does not imply the 4-colour theorem?
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Finding some interesting classes to study

Definition

Let M be binary matroid, e ∈ E(M).
An e-path is a set of the form C − {e} where C is a circuit of M .

s
t M graphic matroid of G with e = (s, t)

then e-paths are st-paths

Remark

The following are equivalent for a family of sets S.

1. S is the set of odd circuits of a signed binary matroid,

2. S is the set of e-paths of a binary matroid.

3. (S is a binary clutter.)
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Finding some interesting classes to study

Remark

The following are equivalent for a family of sets S.

1. S is the set of odd circuits of a signed binary matroid,

2. S is the set of e-paths of a binary matroid.

3. (S is a binary clutter.)

Idea

Find classes of matroids generalizing graphic and co-graphic and study
the cycling conjecture for the e-paths of these matroids.
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Even cycle matroids

Let G be a graph

A =

 cuts of G


Then MA is graphic matroid of G
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Even cycle matroids

Let (G,Σ) be a signed graph

A =

 cuts of G

Σ


We define MA to be the even cycle matroid of (G,Σ).

Why the name? cycles of MA = even cycles of (G,Σ).

Circuits of MA:

or or
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e-paths of even cycle matroid

Circuits of even cycle matroid of (G,Σ).

or or

Assume e ∈ Σ.

• If e is loop, then e-paths = odd circuits

• If e not loop, then e-paths are

or
T
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e-paths of even cycle matroid

Assume e ∈ Σ.

• If e is loop, then e-paths = odd circuits

• If e not loop, then e-paths are

or
T

Thus,

e-paths of even cycle matroids =
odd T -joins of signed graph with |T | ≤ 2.
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A special case of the Cycling conjecture

Theorem [Abdi, G 2014]

The Cycling conjecture holds for e-paths of even cycle matroids.

What does it say?
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Theorem [Abdi, G 2014]

The Cycling conjecture holds for e-paths of even cycle matroids.

What does it say? reformulation ...

Theorem

Let (G,Σ) be a signed graph and |T | ≤ 2. The odd T -joins pack if

1. Eulerian condition holds,

2. none of the following minors: odd-K5, lines of Fano.

odd-K5 (T = ;) Line of Fano (|T | = 2)
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The Eulerian condition

The Eulerian condition for (G,Σ) and |T | ≤ 2 says,

• if v /∈ T then degree of v is even,

• if v ∈ T then parity of degree of v is same as parity of |Σ|.

Is it really needed? YES

T = ;

|T | = 2

Does not pack

Does not pack
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Special cases

Theorem

Let (G,Σ) be a signed graph and |T | ≤ 2. The odd T -joins pack if

1. Eulerian condition holds,

2. none of the following minors: odd-K5, lines of Fano.

Question

Any interesting special cases? Many
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Special case: Packing odd cycles

Special case: T = ∅

Theorem [Geelen,G 2002]

For an Eulerian signed graph.
The odd circuits pack if there is no odd-K5 minor.
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Special case: Packing T -joins

Special case: (G,Σ) \ v bipartite for v /∈ T

Theorem

Let G be a graph and |T | ≤ 4. Suppose vertices not in T have even
degree and vertices in T have degrees of the same parity. Then the
minimum size of a T -cut is equal to the maximum number of pairwise
disjoint T -joins.

Holds for |T | ≤ 8 (Cohen 97)
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Special case: 2-commodity flow

Special case: T = {s, t}, (G,Σ) \ {s, t} bipartite

Theorem [Hu 63, Rothschild, Whinston 66]

Let G be a graph with vertices s1, t1, s2, t2. Suppose all of s1, t1, s2, t2
have the same degree parity and all the other vertices have even degree.
Then the minimum number of edges needed to intersect all siti paths
equals the maximum number of pairwise disjoint siti-paths (i = 1, 2).
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Special case: covering with cuts

Special case: G plane graph

Let (?) be a graph obtained as follows:

1. start with a plane graph with exactly two odd faces F1, F2,

2. identify a pair of vertices a, b.

F1 F2

a

b

Theorem

Let G as in (?). If the length of the shortest odd cycle is k, then there
exists cuts B1, . . . , Bk such that every edge e is in at least k − 1 of
B1, . . . , Bk.
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exists cuts B1, . . . , Bk such that every edge e is in at least k − 1 of
B1, . . . , Bk.
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Let (?) be a graph obtained as follows:

1. start with a plane graph with exactly two odd faces F1, F2,

2. identify a pair of vertices a, b.

Thus we proved the following conjecture for graphs of type (?) !!!

Conjecture

Suppose (G,E(G)) has no odd-K5 minor. If the length of the shortest
odd cycle is k, then there exists cuts B1, . . . , Bk such that every edge e
is in at least k − 1 of B1, . . . , Bk.

Open problem

Prove the conjecture for the class of graphs obtained from a plane graph
with exactly two odd faces by adding an apex vertex.
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Special cases: topological classes

Theorem

Let (G,Σ) be a signed graph and |T | ≤ 2. The odd T -joins pack if

1. Eulerian condition holds,

2. none of the following minors: odd-K5, lines of Fano.

Question

What are topological classes without odd-K5 or lines of Fano minor?
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Question

What are topological classes without odd-K5 or lines of Fano minor?

Example:

T = {s, t}
G is a plane graph

(G,Σ) \ {a, b} bipartite

s

t

a

b

plane graph

infinite face
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Question

What are topological classes without odd-K5 or lines of Fano minor?

Example:

T = {s, t}
(s, t) is an edge

(G,Σ) has embedding on projective plane where every face is even
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Known cases of the Cycling conjecture

odd cycles of graphic matroids Geelen, G

odd cycles of co-graphic matroids Seymour

e-path of even-cycle Abdi, G

e-path of even-cut OPEN

e-path of dual of even-cycle Implies 4-colour theorem

e-path of dual of even-cut Implies 4-colour theorem
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Thank you for your 
attention
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