
Improved Approximations for 
Graph-TSP in Regular Graphs

R Ravi
Carnegie Mellon University

Joint work with Uriel Feige (Weizmann), 
Jeremy Karp (CMU) and Mohit Singh (MSR)

1



Graph TSP

Given a connected unweighted graph, a tour is a 
closed walk that visits every vertex at least once.
Objective: find shortest tour.
Ideally – a Hamiltonian cycle.
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A tour may use the same edge twice
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A tour may use the same edge twice
length 8x1 + 1x2 = 10
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Main results

Regular graphs have short tours
1. Size 9n/7 in cubic bipartite graphs 

(APPROX14, joint with Jeremy Karp)

2. Size (1 + ܱ( ଵ
ௗ

))n in d-regular 
graphs (IPCO14, joint with Uri Feige and 
Mohit Singh)
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Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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General bounds

In every connected n-vertex graph, the 
length of the shortest tour is between n
and 2n-2.
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Spanning tree upper bound
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Double spanning tree edges, 
drop remaining edges
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Christofides 1976

• A 3/2-approximation to graph TSP (and more 
generally, metric TSP).

Tour composed of union of:
• Spanning tree.
• Minimum T-join on odd-degree vertices.
Gives a connected Eulerian graph (= tour).
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Recall definitions

Let T be a subset of the vertex set of a graph. An 
edge set is called a T-join if in the induced 
subgraph of this edge set, the collection of all 
the odd-degree vertices is T.
A graph is Eulerian if all degrees are even. A  
connected Eulerian (multi)-graph has an 
Eulerian circuit: a walk that uses every edge 
exactly once.
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Christofides for graph TSP
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Arbitrary spanning tree
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Odd degree vertices
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Odd degree vertices
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Find minimum T-join
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Union of the T-join…
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… and the spanning tree
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Union of T-join and the spanning tree
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Drop remaining edges
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Analysis

The algorithm gives a connected multi-graph with 
even degrees. It has an Eulerian tour.
Spanning trees and minimum T-joins can be found 
in polynomial time.

Approximation ratio:
Spanning tree < opt
Minimum T-join ≤ opt/2
Christofides tour < 3opt/2
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Upper bound on T-join
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Consider optimal tour
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Ignore other edges

26



Take either even or odd segments

27



The even segments
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The odd segments
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Approximating TSP

• NP-hard and APX-hard. 
• 3/2 still best approx ratio for metric TSP.
• Held-Karp linear program gives at least as 

good approximation. Moreover, worst 
integrality gap example known is 4/3, on an 
instance of graph TSP of max degree 3.

• For graph TSP, there has been substantial 
progress in recent years, leading to 7/5
approximation [Sebo and Vygen 2012]
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Oveis-Gharan, Saberi and Singh 2011

Thm: Graph TSP can be approximated within a 
ratio better than 3/2.
Proof idea: Rather than starting from arbitrary 
spanning tree, start with one that would give a 
cheap T-join. 
Use fractional solution of LP to define a 
distribution over spanning trees, sample one at 
random, and it is likely to have a cheap T-join.
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Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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Momke and Svensson 2011

• A different approach, giving a 1.461 
approximation for graph-TSP.

• Every 3-regular 2-vertex connected graph has 
a tour of length at most 4n/3. (Also proven 
independently by Aggarwal, Garg, Gupta ‘11 and 
Boyd et al. ‘11)
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Momke and Svensson 2011

Every 3-regular 2-vertex connected graph has a 
tour of length at most 4n/3.
New ideas: 
• Use probability distribution over T-joins to fix 

up a tree
• Delete carefully chosen edges from T-join 
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Naddef and Pulleyblank 1981

Assigning every edge in a 3-regular 2-vertex 
connected graph a value of 1/3 puts it in the 
perfect matching polytope
Theorem [Edmonds 1964]: Perfect Matching 
polytope characterization
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Naddef and Pulleyblank 1981

Assigning every edge in a 3-regular 2-vertex 
connected graph a value of 1/3 puts it in the 
perfect matching polytope

• |S| odd implies |δ(S)| odd 
• 2-connectivity implies |δ(S)| ≥ 3
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Naddef and Pulleyblank 1981

Assigning every edge in a 3-regular 2-vertex 
connected graph G a value of 1/3 puts it in the 
perfect matching polytope

(Caratheodory’s theorem):  G with 1/3 on every 
edge can be written as a convex combination of 
a polynomial number of perfect matchings M1, 
M2, …, Mk
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Momke and Svensson 2011
• Pick a DFS tree T with a set of back edges B

– P: Tree edges with back edge on parent edge
– Q = T\P: Tree edges with sibling tree edges

• Pick a matching M randomly from the distribution 
defined by x=1/3 on E(G)

• Initialize solution H to whole graph G
– For all edges in M ∩ B, delete it from H
– For all edges in M ∩ P, delete it from H
– For all edges in M ∩ Q, double it in H

Claim: H is an Eulerian connected graph (and hence 
contains a tour)
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• Pick a DFS tree T with a set of back edges B

– P: Tree edges with back edge on parent edge
– Q = T\P: Tree edges with sibling tree edges

• Pick a matching M randomly from the distribution defined by x=1/3 on 
E(G)

• Initialize solution H to whole graph G
– For all edges in M ∩ B, delete it from H
– For all edges in M ∩ P, delete it from H
– For all edges in M ∩ Q, double it in H

39



Momke and Svensson 2011
• Pick a DFS tree T with a set of back edges B

– P: Tree edges with back edge on parent edge
– Q = T\P: Tree edges with sibling tree edges

• Pick a matching M randomly from the distribution defined by x=1/3 on 
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– For all edges in M ∩ B, delete it from H
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Claim: H is a connected Eulerian
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Momke and Svensson 2011

Claim: H is an Eulerian connected graph (and hence 
contains a tour)
• Eulerian: Every node has initial degree 3. One 

matching edge incident is deleted or doubled 
making degree 2 or 4

• Connected
– If tree edge in P deleted, its sibling back edge connects 

both sides
– If back edge in B is deleted, its sibling tree edge in P 

connects both sides
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Momke and Svensson 2011

E[|H|] = |G| - E[|M ∩ B|] - E[|M ∩ P|] + E[|M ∩ Q|]
=  3n/2 - (1/3)  |B| - (1/3)  |P| + (1/3) |Q|
≈  3n/2 - (1/3)(n/2) – (1/3) (n/2) + (1/3) (n/2) 
=  9n/6 - n/6
=  4n/3

Theorem: Every 3-regular 2-vertex connected 
graph has a tour of length at most 4n/3
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Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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Sebo and Vygen 2012

• Find a ‘nice’ ear decomposition of G
• Pick a set of edges based on the decomposition (ear-

muff) to form a connected sugraph
• Extend chosen subgraph to an even supergraph by 

inductively adding edges from the pendant ears
– If many pendant ears, add T-join on odd nodes (augment)
– If few pendant ears, use Momke and Svensson method 

(deletion)
Theorem: 7/5-approximation for graph-TSP (best known 
currently)
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Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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Augment cycle cover with few cycles

• Find a cycle cover with few cycles. 
• Connect it by doubled edges to get a 

connected Eulerian multi-graph.
• If the cycle cover has c cycles, the tour length 

is at most n + 2(c-1).
• Need c to be small. 
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Cycle cover
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Connecting the cycle cover
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Drop remaining edges
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Simple 3n/2 tour in cubic bipartite 
graphs

1. Find a cycle cover with no parallel 
edges (e.g. union of any two disjoint 
perfect matchings)

Bipartite implies no odd cycles min 
cycle length is 4  At most n/4 cycles
2. Add doubled spanning tree 

connecting cycles 
Total no of edges ≈ n + 2(n/4)
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Simple 4n/3 tour in cubic bipartite 
graphs

1. While there is a square, replace it 
with a gadget

2. Find cycle cover in square-free 
graph

3. Expand gadgets maintaining 
square-free cycle cover

Total no of edges ≈ n + 2(n/6)
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Replacing Squares
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Replacing Squares 1
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Replacing Squares 1
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Replacing Squares 2
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Replacing Squares 2
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Replacing Squares 3

57



Replacing Squares 3
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Better than 4/3 approximation?

Sub-cubic graph instances already require 4n/3
edges.
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Better than 4/3 approximation?

Correa, Larre, Soto 2011, 2012
2-edge-connected cubic graphs have a tour of 
length (4/3 – 1/61236)n 
3-edge-connected bipartite cubic graphs have a 
tour of length (4/3 – 1/108)n

Jeremy Karp, Ravi 2013
Cubic bipartite graphs have a tour of length 9n/7
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Main idea: Replace short cycles 
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Algorithm Sketch

“Organic”: made up of original nodes and edges 
(not resulting from earlier replacements)
1. While graph contains 4-cycle or organic 6-

cycle, COMPRESS by replacing cycle with 
gadget

2. Find cycle cover in final compressed graph
3. EXPAND compressed cycles in reverse order 

rewiring cycle cover to span all deleted nodes
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Algorithm Example
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Algorithm Example
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Algorithm: Good Expansion
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Algorithm: Bad Expansion
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Handling Bad Expansions
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After handling, y ≥ 3 
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Analysis: Protected Edges
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Analysis Outline

70

• Every 6-cycle can be charged towards 2 or 3 
protected edges

• If a final cycle has P protected edges, at most 
P/3 6-cycles are charged to it

• Final amortized average cycle length ≥ 7
• Total number of edges ≤ n + 2 (n/7)



Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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Nisheeth Vishnoi 2012

• Thm: Every n-vertex d-regular graph has a tour 
of length (1 + o(1))n, where the o(1) term 
tends to 0 as d grows.

• Moreover, such a tour can be found in random 
polynomial time.
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Vishnoi’s approach

• Find a cycle cover with few cycles. 
• Connect it by doubled edges to get a 

connected Eulerian multi-graph.
• If the cycle cover has c cycles, the tour length 

is at most n + 2(c-1).
• Need c to be small. 
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Key questions

• Why would a d-regular graph have a cycle 
cover with few cycles?

• Even if such a cycle cover exists, how can it be 
found?
(A Hamiltonian cycle is a cycle cover with one 
cycle, but it is NP-hard to find it.)
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Matrix representation of cycle covers

Given G, consider its n by n adjacency matrix A.
An all-1 permutation is a cycle cover.

111

111

111

111

111

111

111

111
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Permanents and cycle covers

• The permanent of the adjacency matrix is 
precisely the number of cycle covers.

• For d-regular graphs, the matrix is doubly 
stochastic (after scaling by 1/d).

• Van-der-Warden’s conjecture [1926] (proved 
by Egorychev and by Falikman [1981]) implies 
that the permanent is large. 
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Permanents and cycle covers
[Vishnoi 2012; ~Noga Alon 2003]

• Van-der-Warden’s conjecture implies that 
d-regular graphs have many different cycle 
covers.

• There are only few permutations with linearly 
many cycles (a random permutation has 
O(log n) cycles).

• A random cycle cover in a d-regular graph has 
ܱ( 

୪୭ ௗ
) cycles. 
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Vishnoi’s algorithm

Use the approximation algorithm of Jerrum
Sinclair and Vigoda [2004] for the permanent to 
find a random cycle cover.
Connect it using double edges to get a 
connected Eulerian subgraph.
In a d-regular graph, this gives a tour of length 

1 + ܱ ଵ
୪୭ ௗ

݊
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Regularity is essential

Graphs of minimum degree d need not have 
short tours.

d

n-d
79



Improved bounds

Thm: Every n-vertex d-regular graph has a tour 
of length (1 + o(1))n, where the o(1) term tends 
to 0 as d grows.
Moreover, such a tour can be found in random 
polynomial time.

Vishnoi           2012 1 = ܱ( ଵ
୪୭ ௗ

)

Feige, Ravi, Singh 2014      1 = ܱ( ଵ
ௗ

)
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Our proof approach

• Find a spanning tree with a small set T of odd 
degree vertices.

• Find a small T-join, of size O(|T|) + O(n/d).
The union of the spanning tree and T-join is a 
connected Eulerian subgraph, hence a tour of 
length n + O(|T|) + O(n/d).
How small can we make |T|? 

In our proof T = ܱ 
ௗ

.
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Proof approach

• Find a spanning tree with a small set T of odd 
degree vertices.

• Find a small T-join, of size O(|T|) + O(n/d).
The union of the spanning tree and T-join is a 
connected Eulerian subgraph, hence a tour of 
length n + O(|T|) + O(n/d).
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Why is there a T-join of size 
O(|T|) + O(n/d)?

Let T’ be a tree spanning T.
Claim: There is a T-join supported only on edges 
of T’, and hence of size at most |T’|-1.
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Upper bound on T-join
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A tree T’ spanning T
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A tree T’ spanning T

86



A T-join
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Tree T’ of size at most 2|T| + 3n/(d+1) 
spanning a set T

• A 3-net: maximal set of vertices, no two of 
which at distance less than 3 from each other.

• 3-net has at most n/(d+1) vertices.
• Every vertex from T at distance at most 2 from 

3-net.
• All of T plus the 3-net can be connected by 

2|T| + 3n/(d+1)-3 edges.
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Proof approach

• Find a spanning tree with a small set T of odd 
degree vertices.

• Find a small T-join, of size O(|T|) + O(n/d).
The union of the spanning tree and T-join is a 
connected Eulerian subgraph, hence a tour of 
length n + O(|T|) + O(n/d).
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Proof approach

• Find a spanning tree with a small set T of odd 
degree vertices.

• Find a small T-join, of size O(|T|) + O(n/d).
The union of the spanning tree and T-join is a 
connected Eulerian subgraph, hence a tour of 
length n + O(|T|) + O(n/d).
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Spanning tree with few odd degree 
vertices

Thm: Every connected d-regular graph has a 
spanning tree with ܱ( 

ௗ
) odd degree vertices.

Proof approach: cover all vertices in G by a small 
number of paths (a spanning linear forest).
Complete to a spanning tree arbitrarily. 
If the number of paths is P, then the number of 
odd degree vertices in the resulting spanning 
tree is at most 4P-2.
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A spanning linear forest
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A spanning linear forest
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Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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Path cover number

The fewest number of components in a linear 
forest is the path cover number of the graph.
Conjecture [Magnant and Martin, 2009]: the 
path cover number of a d-regular graph is at 
most n/(d+1).
Proved for d < 6.
If true for all d, would imply a tour of length 
(1 + O(1/d))n. Better than what we know how to 
prove.
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Linear arboricity conjecture

Arboricity – covering all edges by forests.
Linear arboricity – covering all edges by linear 
forests.
Conjecture [Akiyama, Exoo, Harary, 1981]: in d-
regular graphs, ௗାଵ

ଶ
linear forests suffice.

If true, one of these linear forests has at least 
n – O(n/d) edges, and hence at most O(n/d) 
components.
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Results on linear arboricity conjecture

Alon, Teague and Wormald 2001 (see also Alon and 

Spencer): Linear arboricity is at most ௗାை
෨(ௗ

మ
య)

ଶ
.

Implies linear forest of size 1 − ෨ܱ ଵ
ௗ

భ
య ݊, and 

by our results, a tour of length 1 + ෨ܱ ଵ
ௗ

భ
య ݊.
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Improved bounds

Thm: every d-regular graph has a path cover 
with ܱ( 

ௗ
) paths.

Corollary: every d-regular graph has a tour of 
length 1 + ܱ(1/ ݀) ݊.

99



Inductive construction of a path cover
Easier for directed graphs

Single vertex v: any two of its edges can be used 
as part of a path.
Path between s and t: only one edge from each 
endpoint can be used as part of a longer path.
Cannot contract the path to a single vertex.
If edges are oriented, directed path from s to t 
can be contracted to single vertex, with 
incoming edges to s and outgoing edges from t.
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Orienting the edges

• Suppose for simplicity that d is even.
• Take an Euler tour through all edges.
• Orient the edges according to tour.
• Gives a directed graph with in and out degrees 

d/2.
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Algorithm Sketch: One phase

• Pair up nodes arbitrarily
• Put the two nodes of a pair in (L,R) or (R,L) 

respectively at random
• Find max matching of directed edges from L to R; 

Use “dummy” edges to complete to a perfect 
matching M

• Delete non matching arcs from L to R and all arcs 
within L and within R

• Use matching arc to “extend” paths and reduce 
number of paths by half
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Algorithm Sketch: One phase
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Algorithm Sketch: One phase
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Algorithm Sketch: One phase
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Algorithm Sketch: One phase
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Algorithm: Analysis Sketch
• Assume n is power of 2  vertex in phase t is a path of 2t nodes; 

Exactly log n phases
• Show that max matching in phase t is of size ≥ (1 – err(t)) (n/2t)
Size of final linear forest ≥ ∑ ௧|௧ܯ|

≥ ∑ 1 − ݎݎ݁ ݐ 
ଶ௧

≥ ݊ − ݊ ∑  ௧
ଶ௧

Key technical claim:  ݁ݎݎ ݐ ≤ ܿ2

మ
√୪୭ ௗ
√ௗ

Final linear forest size ≥ ݊ − ݊ ∑  ௧
ଶ௧ ≥ ݊ − ܿ݊ √୪୭ ௗ

√ௗ
∑ ଵ

ଶ

మ

௧

≥ ݊ − ܿ′݊ √୪୭ ௗ
√ௗ
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Summary of our approach

• Every d-regular digraph can be covered by 
ܱ( 

ௗ
) paths. (via improved algorithm)

• Every d-regular graph has a spanning tree with 
T = ܱ( 

ௗ
) odd degree vertices.

• There is a T-join with ܱ |ܶ| + ܱ(
ௗ

) edges.

• There is a tour of length n + ܱ( 
ௗ

).
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More generally

Let G be a connected n-vertex graph with max 
degree ∆, avg degree d, min degree ߜ. Then 
there is a tour of length

1 +  ∆ିௗ
∆

+ ܱ ଵ
∆

+ ܱ ଵ
ఋ

݊

Moreover, such a tour can be found in random 
polynomial time.
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Summary

Cubic bipartite graphs have tours of length 9n/7
d-regular graphs have short tours, of size 

1 + ܱ(1/ ݀) n.
Relates to well known conjectures (van-der-
Warden, linear arboricity).
(1 + O(1/d))n appears to be the correct bound.
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Further Open Problems

• Better than 9/7-approximation for cubic, 
bipartite graph tours? 11n/9 [Boyd+ 2011]

• 4/3-approximation for general graph-TSP
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Main ideas for short tours

1. Augment spanning tree with carefully 
chosen edges

2. Delete carefully chosen edges from 
the whole graph

3. Augment cycle cover with few cycles 
4. Augment path cover with few paths
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