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The four-colour theorem

Appel & Haken, 1977; Robertson, Sanders, S., Thomas, 1997
Every loopless planar graph is four-vertex-colourable.

() 2 / 17



The four-colour theorem

Appel & Haken, 1977; Robertson, Sanders, S., Thomas, 1997
Every loopless planar graph is four-vertex-colourable.

Bridgeless = no cut-edge.

Equivalently (Tait, 1880):
Every bridgeless planar cubic graph is three-edge-colourable.

() 2 / 17



The four-colour theorem

Appel & Haken, 1977; Robertson, Sanders, S., Thomas, 1997
Every loopless planar graph is four-vertex-colourable.

Bridgeless = no cut-edge.

Equivalently (Tait, 1880):
Every bridgeless planar cubic graph is three-edge-colourable.

Tutte’s conjecture, 1966
Every bridgeless cubic graph not containing Petersen as a minor is
three-edge-colourable.
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G is apex if G \ v is planar for some vertex v .
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G is doublecross if G can be drawn in the plane with only two
crossings, both on the outside.
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G is theta-connected if
G is cubic and |V (G)| ≥ 8;
for every partition (X ,Y ) of V (G) with |X |, |Y | ≥ 3 there are at
least five edges between X and Y ;
for every partition (X ,Y ) of V (G) with |X |, |Y | ≥ 7 there are at
least six edges between X and Y .

Theorem (Robertson, S., Thomas, 1997)
Any minimal counterexample to Tutte’s conjecture is either
theta-connected or apex.
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Theorem (Robertson, S., Thomas, 1995)
Every theta-connected graph not containing Petersen is either apex or
doublecross, except Starfish.
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Theorem
Let G be theta-connected, and not contain Petersen. If G

contains Starfish then G is Starfish
contains Jaws then G is doublecross
contains neither of Jaws and Starfish then G is apex.
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Consequently:

Theorem
Every minimal counterexample to Tutte’s conjecture is
theta-connected, and either apex or doublecross.
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Consequently:

Theorem
Every minimal counterexample to Tutte’s conjecture is
theta-connected, and either apex or doublecross.

To prove Tutte’s conjecture in general, it is enough to prove that
every bridgeless apex cubic graph is three-edge-colourable
(proved by Sanders and Thomas ∼1997)
every bridgeless non-apex doublecross cubic graph is
three-edge-colourable (proved by Edwards, Sanders, S., Thomas
2014).
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Theorem
(Assuming 4CT) every bridgeless cubic graph with crossing number
one is three-edge-colourable.
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Let Ω be some set in circular order. A 3-colouring of Ω is a map
φ : Ω→ {1,2,3}.
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Let Ω be some set in circular order. A 3-colouring of Ω is a map
φ : Ω→ {1,2,3}.
A set C of 3-colourings of Ω is planar-consistent if
for every φ ∈ C,
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Let X be a connected planar graph with all vertices of degree three,
and with half-edges going into the infinite region. Let Ω be the
half-edges in order, and let C(Ω,X ) be the set of all three-colourings of
Ω that can be extended to three-edge-colourings of X .
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Let Ω be some set in circular order. A 3-colouring of Ω is a map
φ : Ω→ {1,2,3}.
A set C of 3-colourings of Ω is planar-consistent if
for every φ ∈ C,
and for every choice of two colours x , y ∈ {1,2,3},
there is a planar pairing Π of {e ∈ Ω : φ(e) ∈ {x , y}}, such that
for every subset Π′ ⊆ Π,
C contains the colouring obtained from φ by
switching x ⇔ y on the union of Π′.

Let X be a connected planar graph with all vertices of degree three,
and with half-edges going into the infinite region. Let Ω be the
half-edges in order, and let C(Ω,X ) be the set of all three-colourings of
Ω that can be extended to three-edge-colourings of X .

Theorem
C(Ω,X ) is planar-consistent.
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X is D-reducible if every nonempty planar-consistent set of
3-colourings of Ω contains a colouring in C(Ω,X ).
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X is D-reducible if every nonempty planar-consistent set of
3-colourings of Ω contains a colouring in C(Ω,X ).

Theorem (Birkhoff, 1913)
If G is a minimal planar bridgeless cubic graph that is not
three-edge-colourable, then no 5-gon touches three other 5-gons
consecutively.
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X is D-reducible if every nonempty planar-consistent set of
3-colourings of Ω contains a colouring in C(Ω,X ).

Theorem (Birkhoff, 1913)
If G is a minimal planar bridgeless cubic graph that is not
three-edge-colourable, then no 5-gon touches three other 5-gons
consecutively.
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Theorem
Birkhoff’s diamond is D-reducible.
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Theorem (Franklin, 1923)
The 5/5/5/6 diamond is D-reducible.
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Theorem (Franklin, 1923)
The 5/5/5/6 diamond is D-reducible.

Theorem (Bernhart, 1946)
The 5/6/5/6 diamond is C-reducible.

Now there are thousands of configurations that are known to be D- or
C-reducible. We used 633 of them.
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Unavoidability

Planar triangulation is internally 6-connected if its dual is
theta-connected; ie every cycle of length ≤ 5 bounds an open disc (in
the sphere) containing at most one vertex, and containing no vertices if
it has length ≤ 4.
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Unavoidability

Planar triangulation is internally 6-connected if its dual is
theta-connected; ie every cycle of length ≤ 5 bounds an open disc (in
the sphere) containing at most one vertex, and containing no vertices if
it has length ≤ 4.

Enough to show:

Theorem
One of the 633 appears in every internally 6-connected planar
triangulation.
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Theorem
If T is an internally 6-connected triangulation, there is a function
φ(u, v) for all adjacent u, v, satisfying:

φ(u, v) = −φ(v ,u)

if φ(u, v) > 5 then one of the 633 configurations is present and
contains u
if 10(6− d(u))−

∑
v φ(u, v) > 0 (where d(u) is the degree of u

and the sum is over all vertices v adjacent to u) then one of the
633 configurations is present, and either u or some neighbour of u
is contained in it.
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How to modify this to handle doublecross graphs?
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How to modify this to handle doublecross graphs?
Step 1: Change “planar-consistent” to “XX-consistent”. (Use
doublecross pairings instead of planar pairings.)
Step 2: Change D- and C-reducibility to XXD- and
XXC-reducibility.
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How to modify this to handle doublecross graphs?
Step 1: Change “planar-consistent” to “XX-consistent”. (Use
doublecross pairings instead of planar pairings.)
Step 2: Change D- and C-reducibility to XXD- and
XXC-reducibility.

Not all the 633 are XX-consistent. But we found a list of 756 that
works.

All 756 configurations are XXD- or XXC-reducible
The discharging theorem still works (all three parts) with the same
function φ(u, v).
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Back to the cubic graph G: let g1,g2,g3,g4 be the crossing edges.
Choose its drawing so that g1, . . . ,g4 are in the infinite region R∞ of
G \ {g1, . . . ,g4}. Let Z be the cycle bounding R∞.
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Theorem
If |E(Z )| ≤ 20 then the subgraph formed by Z + g1,g2,g3,g4 is
C-reducible.
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Back to the cubic graph G: let g1,g2,g3,g4 be the crossing edges.
Choose its drawing so that g1, . . . ,g4 are in the infinite region R∞ of
G \ {g1, . . . ,g4}. Let Z be the cycle bounding R∞.

Theorem
If |E(Z )| ≤ 20 then the subgraph formed by Z + g1,g2,g3,g4 is
C-reducible.

Theorem
If |E(Z )| ≥ 21 then one of the 756 configurations appears (in its cubic
form) in G \ {g1, . . . ,g4}, with all its finite regions disjoint from R∞.
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Subdivide g1, . . .g4 and identify their midpoints, forming G+. This
is cubic except the new vertex has degree 8.
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Subdivide g1, . . .g4 and identify their midpoints, forming G+. This
is cubic except the new vertex has degree 8.
Let T be its dual; so the new vertex of G+ becomes the infinite
region of T , bounded by a cycle C of length 8.
Add a dense graph to the infinite region of T , making an internally
6-connected triangulation where every vertex in C has degree at
least 12.
The sum of 10(6− d(u)), summed over all u ∈ V (T ) \ V (C),
equals 10(k + 6− 2|V (C)|), where k is the number of edges of T
between V (C) and V (T ) \ V (C).
Only at most 5k is sent out of V (T ) \ V (C) by the discharging
function.
So at least 5k + 60− 20|V (C)|) remains on the vertices in
V (T ) \ V (C). But |V (C)| = 8 and k ≥ 21, so some vertex in
V (T ) \ V (C) has positive charge.
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